Artigo Acesso aberto Revisado por pares

Indirect Tensile Behaviour of Fibre Reinforced Alkali-Activated Composites

2018; Multidisciplinary Digital Publishing Institute; Volume: 6; Issue: 2 Linguagem: Inglês

10.3390/fib6020030

ISSN

2079-6439

Autores

Filipe Almeida, Vítor M. C. F. Cunha, Tiago Miranda, Nuno Cristelo,

Tópico(s)

Advanced ceramic materials synthesis

Resumo

There are currently still some sustainability-related issues that need to be tackled within the construction sector. Namely, cement production is accountable for nearby 5% of the worldwide total CO2-eq release. Therefore, environmentally viable and economically sustainable solutions need to be pursued in order to mitigate the use of Portland cement. The incorporation of industrial waste in concrete compositions, such as fly ash (from coal combustion in power stations) is a feasible alternative. The properties of these residues may be enhanced through alkaline activation, which is able to yield aluminosilicate-based materials with excellent physico-chemical properties. Nonetheless, these materials exhibit a brittle behaviour. Therefore, the present work addresses the study of alkali-activated composites reinforced with sisal fibres. For that purpose, alkali-activated Class F fly ash was mixed with natural fibres and the composite mechanical behaviour was assessed through both indirect tensile and compressive tests. Four different fibre contents, in wt % of fly ash (0, 0.2, 0.6 and 1%), two fibre lengths (13 and 50 mm) and four curing periods (14, 28, 56 and 112 days) were considered. Results confirm that the post-cracking response of these composites was improved with the inclusion of sisal fibres. In general, higher residual tensile strengths and dissipated energy were observed for the lengthier fibres, i.e., 50 mm.

Referência(s)