Artigo Acesso aberto Revisado por pares

State Feedback Control in Equinoctial Variables for Orbit Phasing Applications

2018; American Institute of Aeronautics and Astronautics; Volume: 41; Issue: 8 Linguagem: Inglês

10.2514/1.g003402

ISSN

1533-3884

Autores

Mirko Leomanni, Gianni Bianchini, Andrea Garulli, Antonio Giannitrapani,

Tópico(s)

Astro and Planetary Science

Resumo

No AccessEngineering NoteState Feedback Control in Equinoctial Variables for Orbit Phasing ApplicationsMirko Leomanni, Gianni Bianchini, Andrea Garulli and Antonio GiannitrapaniMirko LeomanniUniversity of Siena, 53100 Siena, Italy, Gianni BianchiniUniversity of Siena, 53100 Siena, Italy, Andrea GarulliUniversity of Siena, 53100 Siena, Italy and Antonio GiannitrapaniUniversity of Siena, 53100 Siena, ItalyPublished Online:6 Jun 2018https://doi.org/10.2514/1.G003402SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Vallado D. A., Fundamentals of Astrodynamics and Applications, 3rd ed., Springer–Verlag, New York, 2007, Chap. 6. Google Scholar[2] Starek J. A., Açkmeşe B., Nesnas I. A. and Pavone M., "Spacecraft Autonomy Challenges for Next-Generation Space Missions," Advances in Control System Technology for Aerospace Applications, Springer–Verlag, Berlin, 2016, pp. 1–48. doi:https://doi.org/10.1007/978-3-662-47694-9_1 CrossrefGoogle Scholar[3] Leomanni M., Garulli A., Giannitrapani A. and Scortecci F., "Propulsion Options for Very Low Earth Orbit Microsatellites," Acta Astronautica, Vol. 133, 2017, pp. 444–454. doi:https://doi.org/10.1016/j.actaastro.2016.11.001 AASTCF 0094-5765 CrossrefGoogle Scholar[4] Clohessy W. H. and Wiltshire R. S., "Terminal Guidance System for Satellite Rendezvous," Journal of Aerospace Sciences, Vol. 27, No. 9, 1960, pp. 653–658. doi:https://doi.org/10.2514/8.8704 LinkGoogle Scholar[5] Hempel P. and Tschauner J., "Rendezvous with a Target in an Elliptical Orbit," Acta Astronautica, Vol. 11, No. 2, 1965, pp. 104–109. AASTCF 0094-5765 Google Scholar[6] Ulybyshev Y., "Long-Term Formation Keeping of Satellite Constellation Using Linear-Quadratic Controller," Journal of Guidance, Control, and Dynamics, Vol. 21, No. 1, 1998, pp. 109–115. doi:https://doi.org/10.2514/2.4204 JGCODS 0731-5090 LinkGoogle Scholar[7] Starin S. R., Yedavalli R. and Sparks A. G., "Spacecraft Formation Flying Maneuvers Using Linear Quadratic Regulation with No Radial Axis Inputs," AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2001-4029, 2001, pp. 6–9. doi:https://doi.org/10.2514/6.2001-4029 LinkGoogle Scholar[8] Gao H., Yang X. and Shi P., "Multi-Objective Robust Control of Spacecraft Rendezvous," IEEE Transactions on Control Systems Technology, Vol. 17, No. 4, 2009, pp. 794–802. doi:https://doi.org/10.1109/TCST.2008.2012166 IETTE2 1063-6536 CrossrefGoogle Scholar[9] Richards A. and How J. P., "Robust Variable Horizon Model Predictive Control for Vehicle Maneuvering," International Journal of Robust and Nonlinear Control, Vol. 16, No. 7, 2006, pp. 333–351. doi:https://doi.org/10.1002/(ISSN)1099-1239 CrossrefGoogle Scholar[10] Di Cairano S., Park H. and Kolmanovsky I., "Model Predictive Control Approach for Guidance of Spacecraft Rendezvous and Proximity Maneuvering," International Journal of Robust and Nonlinear Control, Vol. 22, No. 12, 2012, pp. 1398–1427. doi:https://doi.org/10.1002/rnc.2827 CrossrefGoogle Scholar[11] Leomanni M., Rogers E. and Gabriel S. B., "Explicit Model Predictive Control Approach for Low-Thrust Spacecraft Proximity Operations," Journal of Guidance, Control, and Dynamics, Vol. 37, No. 6, 2014, pp. 1780–1790. doi:https://doi.org/10.2514/1.G000477 JGCODS 0731-5090 LinkGoogle Scholar[12] Shibata M. and Ichikawa A., "Orbital Rendezvous and Flyaround Based on Null Controllability with Vanishing Energy," Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4, 2007, pp. 934–945. doi:https://doi.org/10.2514/1.24171 JGCODS 0731-5090 LinkGoogle Scholar[13] Zhou B., Lin Z. and Duan G.-R., "Lyapunov Differential Equation Approach to Elliptical Orbital Rendezvous with Constrained Controls," Journal of Guidance, Control, and Dynamics, Vol. 34, No. 2, 2011, pp. 345–358. doi:https://doi.org/10.2514/1.52372 JGCODS 0731-5090 LinkGoogle Scholar[14] Lantoine G. and Epenoy R., "Quadratically Constrained Linear-Quadratic Regulator Approach for Finite-Thrust Orbital Rendezvous," Journal of Guidance, Control, and Dynamics, Vol. 35, No. 6, 2012, pp. 1787–1797. doi:https://doi.org/10.2514/1.56961 JGCODS 0731-5090 LinkGoogle Scholar[15] Gao X., Teo K. L. and Duan G.-R., "Robust H∞ Control of Spacecraft Rendezvous on Elliptical Orbit," Journal of the Franklin Institute, Vol. 349, No. 8, 2012, pp. 2515–2529. doi:https://doi.org/10.1016/j.jfranklin.2012.08.005 JFINAB 0016-0032 CrossrefGoogle Scholar[16] Hartley E. N. and Maciejowski J. M., "Field Programmable Gate Array Based Predictive Control System for Spacecraft Rendezvous in Elliptical Orbits," Optimal Control Applications and Methods, Vol. 36, No. 5, 2015, pp. 585–607. doi:https://doi.org/10.1002/oca.v36.5 OCAMD5 1099-1514 CrossrefGoogle Scholar[17] Vazquez R., Gavilan F. and Camacho E. F., "Pulse-Width Predictive Control for LTV Systems with Application to Spacecraft Rendezvous," Control Engineering Practice, Vol. 60, 2017, pp. 199–210. doi:https://doi.org/10.1016/j.conengprac.2016.06.017 COEPEL 0967-0661 CrossrefGoogle Scholar[18] Kellett C. M. and Praly L., "Nonlinear Control Tools for Low Thrust Orbital Transfer," IFAC Proceedings Volumes, Vol. 37, No. 13, Sept. 2004, pp. 79–86. doi:https://doi.org/10.1016/S1474-6670(17)31203-X CrossrefGoogle Scholar[19] Singla P., Subbarao K. and Junkins J. L., "Adaptive Output Feedback Control for Spacecraft Rendezvous and Docking Under Measurement Uncertainty," Journal of Guidance, Control, and Dynamics, Vol. 29, No. 4, 2006, pp. 892–902. doi:https://doi.org/10.2514/1.17498 JGCODS 0731-5090 LinkGoogle Scholar[20] Leomanni M., Bianchini G., Garulli A. and Giannitrapani A., "A Class of Globally Stabilizing Feedback Controllers for the Orbital Rendezvous Problem," International Journal of Robust and Nonlinear Control, Vol. 27, No. 18, 2017, pp. 4607–4621. doi:https://doi.org/10.1002/rnc.v27.18 CrossrefGoogle Scholar[21] Steindorf L. M., D'Amico S., Scharnagl J., Kempf F. and Schilling K., "Constrained Low-Thrust Satellite Formation-Flying Using Relative Orbit Elements," 27th AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 17-291, 2017. Google Scholar[22] Crassidis J. L., Markley F. L., Anthony T. C. and Andrews S. F., "Nonlinear Predictive Control of Spacecraft," Journal of Guidance, Control, and Dynamics, Vol. 20, No. 6, 1997, pp. 1096–1103. doi:https://doi.org/10.2514/2.4191 JGCODS 0731-5090 LinkGoogle Scholar[23] Park C., Guibout V. and Scheeres D. J., "Solving Optimal Continuous Thrust Rendezvous Problems with Generating Functions," Journal of Guidance, Control, and Dynamics, Vol. 29, No. 2, 2006, pp. 321–331. doi:https://doi.org/10.2514/1.14580 JGCODS 0731-5090 LinkGoogle Scholar[24] Starek J. A. and Kolmanovsky I. V., "Nonlinear Model Predictive Control Strategy for Low Thrust Spacecraft Missions," Optimal Control Applications and Methods, Vol. 35, No. 1, 2014, pp. 1–20. doi:https://doi.org/10.1002/oca.v35.1 OCAMD5 1099-1514 CrossrefGoogle Scholar[25] Gill E. and How J., "Comparative Analysis of Cartesian and Curvilinear Clohessy-Wiltshire Equations," Journal of Aerospace Engineering, Sciences and Applications, Vol. 3, No. 2, 2011, pp. 1–15. doi:https://doi.org/10.7446/jaesa CrossrefGoogle Scholar[26] Kasdin N. J., Gurfil P. and Kolemen E., "Canonical Modelling of Relative Spacecraft Motion via Epicyclic Orbital Elements," Celestial Mechanics and Dynamical Astronomy, Vol. 92, No. 4, 2005, pp. 337–370. doi:https://doi.org/10.1007/s10569-004-6441-7 CrossrefGoogle Scholar[27] D'Amico S. and Montenbruck O., "Proximity Operations of Formation-Flying Spacecraft Using an Eccentricity/Inclination Vector Separation," Journal of Guidance Control and Dynamics, Vol. 29, No. 3, 2006, pp. 554–563. doi:https://doi.org/10.2514/1.15114 LinkGoogle Scholar[28] Koenig A. W., Guffanti T. and D'Amico S., "New State Transition Matrices for Spacecraft Relative Motion in Perturbed Orbits," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 7, 2017, pp. 1749–1768. doi:https://doi.org/10.2514/1.G002409 JGCODS 0731-5090 LinkGoogle Scholar[29] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA, Reston, VA, 1999, Chap. 10. LinkGoogle Scholar[30] Riggi L. and D'Amico S., "Optimal Impulsive Closed-Form Control for Spacecraft Formation Flying and Rendezvous," American Control Conference, IEEE, New York, 2016, pp. 5854–5861. doi:https://doi.org/10.1109/ACC.2016.7526587 Google Scholar[31] Chernick M. and D'Amico S., "New Closed-Form Solutions for Optimal Impulsive Control of Spacecraft Relative Motion," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 2, 2018, pp. 301–319. doi:https://doi.org/10.2514/1.G002848 JGCODS 0731-5090 LinkGoogle Scholar[32] Bittanti S. and Colaneri P., Periodic Systems: Filtering and Control, Springer–Verlag, London, 2009, Chap. 13. doi:https://doi.org/10.1007/978-1-84800-911-0 Google Scholar[33] Cimen T., "Survey of State-Dependent Riccati Equation in Nonlinear Optimal Feedback Control Synthesis," Journal of Guidance, Control and Dynamics, Vol. 35, No. 4, 2012, pp. 1025–1047. doi:https://doi.org/10.2514/1.55821 LinkGoogle Scholar[34] Brouwer D., "Solution of the Problem of Artificial Satellite Theory Without Drag," The Astronomical Journal, Vol. 64, 1959, pp. 378–397. doi:https://doi.org/10.1086/107958 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byOrbital Rendezvous via a General Nonsingular MethodMatthew T. Walsh and Mason A. Peck5 November 2021 | Journal of Guidance, Control, and Dynamics, Vol. 45, No. 1A Pontryagin-based NMPC approach for autonomous rendez-vous proximity operationsAn MPC Strategy for Low-Thrust Space Debris RendezvousSum-Of-Norms MPC for Linear Periodic Systems with Application to Spacecraft RendezvousSatellite Relative Motion Modeling and Estimation via Nodal ElementsMirko Leomanni, Andrea Garulli, Antonio Giannitrapani and Renato Quartullo22 May 2020 | Journal of Guidance, Control, and Dynamics, Vol. 43, No. 10Orbit Control Techniques for Space Debris Removal Missions Using Electric PropulsionMirko Leomanni, Gianni Bianchini, Andrea Garulli, Antonio Giannitrapani and Renato Quartullo22 May 2020 | Journal of Guidance, Control, and Dynamics, Vol. 43, No. 7Sum-of-Norms Model Predictive Control for Spacecraft ManeuveringIEEE Control Systems Letters, Vol. 3, No. 3 What's Popular Volume 41, Number 8August 2018 CrossmarkInformationCopyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsControl TheoryFeedback ControlGuidance, Navigation, and Control SystemsOptimal Control TheoryOrbital ManeuversOrbital PropertySpace Orbit KeywordsLow Thrust ManeuversFeedback Control SystemLinear Quadratic RegulatorGeostationary SatellitesGeostationary Transfer OrbitOrbital EccentricityNumerical SimulationSpace MissionsContinuous Time Algebraic Riccati EquationHighly Elliptical OrbitPDF Received30 October 2017Accepted22 April 2018Published online6 June 2018

Referência(s)