Trajectory Planning for a Space Robot Actuated by Control Moment Gyroscopes
2018; American Institute of Aeronautics and Astronautics; Volume: 41; Issue: 8 Linguagem: Inglês
10.2514/1.g002988
ISSN1533-3884
Autores Tópico(s)Spacecraft Dynamics and Control
ResumoNo AccessEngineering NoteTrajectory Planning for a Space Robot Actuated by Control Moment GyroscopesYinghong Jia and Arun K. MisraYinghong JiaBeihang University, 100191 Beijing, People's Republic of China and Arun K. MisraMcGill University, Montreal, Quebec H3A 0C3, CanadaPublished Online:6 Jun 2018https://doi.org/10.2514/1.G002988SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Shan M., Guo J. and Gill E., "Review and Comparison of Active Space Debris Capturing and Removal Methods," Progress in Aerospace Sciences, Vol. 80, Jan. 2016, pp. 18–32. doi:https://doi.org/10.1016/j.paerosci.2015.11.001 PAESD6 0376-0421 CrossrefGoogle Scholar[2] James F., Shah S. V., Singh A. K., Madhava Krishna K. and Misra A. K., "Reactionless Maneuvering of a Space Robot in Precapture Phase," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 10, Oct. 2016, pp. 2417–2423. doi:https://doi.org/10.2514/1.G001828 JGCODS 0731-5090 LinkGoogle Scholar[3] Andrist P., Babbitt A., Ethier V., Pfaff M., Rios-Georgio G. and Welter T. R., "Debris Capture and Orbital Manipulation—DECOM," AIAA SPACE Conference and Exposition 2011, AIAA Paper 2011-7293, Sept. 2011. doi:https://doi.org/10.2514/6.2011-7293 Google Scholar[4] Flores-Abad A., Ma O., Pham K. and Ulrich S., "A Review of Space Robotics Technologies for On-Orbit Servicing," Progress in Aerospace Sciences, Vol. 68, July 2014, pp. 1–26. doi:https://doi.org/10.1016/j.paerosci.2014.03.002 PAESD6 0376-0421 CrossrefGoogle Scholar[5] Debus T. J. and Dougherty S. P., "Overview and Performance of the Front-End Robotics Enabling Near-Term Demonstration (FREND) Robotic Arm," AIAA [email protected] Conference, AIAA Paper 2009-1870, April. 2009. doi:https://doi.org/10.2514/6.2009-1870 LinkGoogle Scholar[6] Thronson H. A., Akin D., Grunsfeld J. and Lester D., "The Evolution and Promise of Robotic In-Space Servicing," AIAA Space 2009 Conference & Exposition, AIAA Paper 2009-6545, Sept. 2009. doi:https://doi.org/10.2514/6.2009-6545 LinkGoogle Scholar[7] Peck M. A., Paluszek M. A., Thomas S. J. and Mueller J. B., "Control-Moment Gyroscopes for Joint Actuation: A New Paradigm in Space Robotics," Proceedings of the 1st Space Exploration Conference: Continuing the Voyage of Discovery, AIAA Paper 2005-2522, Feb. 2005. doi:https://doi.org/10.2514/6.2005-2522 LinkGoogle Scholar[8] Gui H., Vukovich G. and Xu S., "Attitude Stabilization of a Spacecraft with Two Parallel Control Moment Gyroscopes," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 3, March 2016, pp. 724–731. doi:https://doi.org/10.2514/1.G000982 JGCODS 0731-5090 LinkGoogle Scholar[9] Gui H., Vukovich G. and Xu S., "Attitude Tracking of a Rigid Spacecraft Using Two Internal Torques," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 4, 2015, pp. 2900–2913. doi:https://doi.org/10.1109/TAES.2015.140670 IEARAX 0018-9251 CrossrefGoogle Scholar[10] Brown D., "Control Moment Gyros as Space-Robotics Actuators," AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2008-7271, Aug. 2008. doi:https://doi.org/10.2514/6.2008-7271 LinkGoogle Scholar[11] Brown D. and Peck M. A., "Energetics of Control Moment Gyroscopes as Joint Actuators," Journal of Guidance, Control, and Dynamics, Vol. 32, No. 6, 2009, pp. 1871–1883. doi:https://doi.org/10.2514/1.42313 JGCODS 0731-5090 LinkGoogle Scholar[12] Peck M. A., "Low-Power, High-Agility Space Robotics," AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2005-6243, Aug. 2005. doi:https://doi.org/10.2514/6.2005-6243 LinkGoogle Scholar[13] Carpenter M. D. and Peck M. A., "Minimum-Power Robotic Maneuvering Using Control-Moment Gyroscopes," AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2007-6324, Aug. 2007. doi:https://doi.org/10.2514/6.2007-6324 LinkGoogle Scholar[14] Carpenter M. D., "Power-Optimal Steering of a Space Robotic System Driven by Control-Moment Gyroscopes," AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2008-7270, Aug. 2008. doi:https://doi.org/10.2514/6.2008-7270 LinkGoogle Scholar[15] Jia Y. and Xu S., "Decentralized Adaptive Sliding Mode Control of a Space Robot Actuated by Control Moment Gyroscopes," Chinese Journal of Aeronautics, Vol. 29, No. 3, 2016, pp. 688–703. doi:https://doi.org/10.1016/j.cja.2016.04.002 CJAEEZ 1000-9361 CrossrefGoogle Scholar[16] Feng X., Jia Y. and Xu S., "Dynamics and Momentum Equalization Control of Redundant Space Robot with Control Moment Gyroscopes for Joint Actuation," AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2016-5381, Sept. 2016. doi:https://doi.org/10.2514/6.2016-5381 LinkGoogle Scholar[17] Schaub H. and Junkins L., "Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters," Journal of the Astronautical Sciences, Vol. 44, No. 1, 1996, pp. 1–19. JALSA6 0021-9142 Google Scholar[18] Yoon H. and Tsiotras P., "Spacecraft Adaptive Attitude and Power Tracking with Variable Speed Control Moment Gyroscopes," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 6, 2002, pp. 1081–1090. doi:https://doi.org/10.2514/2.4987 LinkGoogle Scholar[19] Wie B., Bailey D. and Heiberg C., "Singularity Robust Steering Logic for Redundant Single-Gimbal Control Moment Gyros," Journal of Guidance, Control, and Dynamics, Vol. 24, No. 5, 2001, pp. 865–872. doi:https://doi.org/10.2514/2.4799 JGCODS 0731-5090 LinkGoogle Scholar Previous article FiguresReferencesRelatedDetailsCited byIntegrated Control of Continuum-Manipulator Space Robots with Actuator Saturation and DisturbancesJinzhao Yang, Haijun Peng, Wenya Zhou and Zhigang Wu7 October 2022 | Journal of Guidance, Control, and Dynamics, Vol. 45, No. 12Neural-Network-Based Terminal Sliding Mode Control of Space Robot Actuated by Control Moment Gyros19 November 2022 | Aerospace, Vol. 9, No. 11A Machine Learning Approach for Global Steering Control Moment Gyroscope Clusters17 March 2022 | Aerospace, Vol. 9, No. 3A Gimballed Control Moment Gyroscope Cluster Design for Spacecraft Attitude Control21 September 2021 | Aerospace, Vol. 8, No. 9Global Steering for Control Moment Gyroscope Clusters Using Heuristic Variable Search TechniquesCharalampos Papakonstantinou, Vaios J. Lappas, Hanspeter Schaub and Vassilis Kostopoulos20 January 2021 | Journal of Spacecraft and Rockets, Vol. 58, No. 4Combined spacecraft stabilization control after multiple impacts during the capture of a tumbling target by a space robotActa Astronautica, Vol. 176 What's Popular Volume 41, Number 8August 2018 CrossmarkInformationCopyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsAtmospheric ScienceAttitude ControlCoriolis EffectSpace DebrisSpace Exploration and TechnologySpace MissionsSpace OrbitSpace RobotSpace Science and Technology KeywordsControl Moment GyroscopeSpace RobotSingular Value DecompositionSpace Robotic SystemsGradient MethodSpace OperationsSatellitesCoriolis ForceSpace DebrisAcknowledgmentThe work reported in this Note was supported by the National Natural Science Foundation of China (11272027).PDF Received20 April 2017Accepted16 April 2018Published online6 June 2018
Referência(s)