Accessing new 2D semiconductors with optical band gap: synthesis of iron-intercalated titanium diselenide thin films via LPCVD
2018; Royal Society of Chemistry; Volume: 8; Issue: 40 Linguagem: Inglês
10.1039/c8ra03174f
ISSN2046-2069
AutoresClara Sanchez‐Perez, Caroline E. Knapp, R. H. Colman, Carlos Sotelo-Vázquez, Raija Oilunkaniemi, Risto S. Laitinen, Claire J. Carmalt,
Tópico(s)MXene and MAX Phase Materials
ResumoFe-doped TiSe2 thin-films were synthesized via low pressure chemical vapor deposition (LPCVD) of a single source precursor: [Fe(η5-C5H4Se)2Ti(η5-C5H5)2]2 (1). Samples were heated at 1000 °C for 1-18 h and cooled to room temperature following two different protocols, which promoted the formation of different phases. The resulting films were analyzed by grazing incidence X-ray diffraction (GIXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and UV/vis spectroscopy. An investigation of the Fe doping limit from a parallel pyrolysis study of Fe x TiSe2 powders produced in situ during LPCVD depositions has shown an increase in the Fe-TiSe2-Fe layer width with Fe at% increase. Powders were analyzed using powder X-ray diffraction (PXRD) involving Rietveld refinement and XPS. UV/vis measurements of the semiconducting thin films show a shift in band gap with iron doping from 0.1 eV (TiSe2) to 1.46 eV (Fe0.46TiSe2).
Referência(s)