Artigo Revisado por pares

On a Recently Proposed Vorticity-Based Definition of Wave Drag

2018; American Institute of Aeronautics and Astronautics; Volume: 55; Issue: 6 Linguagem: Inglês

10.2514/1.c034820

ISSN

1533-3868

Autores

Mario Ostieri, Renato Tognaccini,

Tópico(s)

Aerodynamics and Acoustics in Jet Flows

Resumo

No AccessEngineering NoteOn a Recently Proposed Vorticity-Based Definition of Wave DragMario Ostieri and Renato TognacciniMario OstieriUniversity of Naples Federico II, 80125 Napoli, Italy*Ph.D. Student, Dipartimento di Ingegneria Industriale; .Search for more papers by this author and Renato TognacciniUniversity of Naples Federico II, 80125 Napoli, Italy†Associate Professor, Dipartimento di Ingegneria Industriale; . Senior Member AIAA (Corresponding Author).Search for more papers by this authorPublished Online:29 Jun 2018https://doi.org/10.2514/1.C034820SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Mele B., Ostieri M. and Tognaccini R., “Aircraft Lift and Drag Decomposition in Transonic Flows,” Journal of Aircraft, Vol. 54, No. 5, 2017, pp. 1933–1944. doi:https://doi.org/10.2514/1.C034288 LinkGoogle Scholar[2] Marongiu C. and Tognaccini R., “Far-Field Analysis of the Aerodynamic Force by Lamb Vector Integrals,” AIAA Journal, Vol. 48, No. 11, 2010, pp. 2543–2555. doi:https://doi.org/10.2514/1.J050326 AIAJAH 0001-1452 LinkGoogle Scholar[3] Marongiu C., Tognaccini R. and Ueno M., “Lift and Lift-Induced Drag Calculation by Lamb Vector Integration,” AIAA Journal, Vol. 51, No. 6, 2013, pp. 1420–1430. doi:https://doi.org/10.2514/1.J052104 AIAJAH 0001-1452 LinkGoogle Scholar[4] Mele B., Ostieri M. and Tognaccini R., “Vorticity Based Breakdown in Three-Dimensional Compressible Flows,” AIAA Journal, Vol. 54, No. 4, 2016, pp. 1198–1208. doi:https://doi.org/10.2514/1.J054363 AIAJAH 0001-1452 LinkGoogle Scholar[5] Paparone L. and Tognaccini R., “Computational Fluid Dynamics-Based Drag Prediction and Decomposition,” AIAA Journal, Vol. 41, No. 9, 2003, pp. 1647–1657. doi:https://doi.org/10.2514/2.7300 AIAJAH 0001-1452 LinkGoogle Scholar[6] van der Vooren J. and Destarac D., “Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components,” Aerospace Science and Technology, Vol. 8, No. 7, 2004, p. 671. doi:https://doi.org/10.1016/j.ast.2004.09.001 CrossrefGoogle Scholar[7] Oswatitsch K., Gas Dynamics, Academic Press, New York, 1956, p. 209. Google Scholar[8] Mele B. and Tognaccini R., “Aerodynamic Force by Lamb Vector Integrals in Compressible Flow,” Physics of Fluids, Vol. 26, No. 5, 2014, Paper 056104. doi:https://doi.org/10.1063/1.4875015 CrossrefGoogle Scholar[9] Wu J.-Z., Lu X.-Y. and Zhuang L.-X., “Integral Force Acting on a Body due to Local Flow Structures,” Journal of Fluid Mechanics, Vol. 576, April 2007, pp. 265–286. doi:https://doi.org/10.1017/S0022112006004551 JFLSA7 0022-1120 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byWave Drag and Vorticity in Two-Dimensional Viscous and Inviscid FlowsMauro Minervino and Renato Tognaccini19 January 2023Wave drag prediction using the Lamb vector in two-dimensional steady transonic flowsCamille Fournis20 June 2022An invariant vortex-force theory related to classical far-field analyses in transonic flowsCamille Fournis, Didier Bailly and Renato Tognaccini28 July 2021Definition of an Invariant Lamb-Vector-Based Aerodynamic Force Breakdown Using Far-Field Flow SymmetriesCamille Fournis, Didier Bailly and Renato Tognaccini11 November 2020 | AIAA Journal, Vol. 59, No. 1A reference point invariant Lamb vector based aerodynamic force breakdown in steady compressible flowsCamille Fournis, Didier Bailly and Renato Tognaccini5 January 2020Aerodynamic Force Breakdown in Reversible and Irreversible Components by Vortex Force TheoryLin L. Kang, Lorenzo Russo, Renato Tognaccini, Jie Z. Wu and Wei D. Su29 August 2019 | AIAA Journal, Vol. 57, No. 11 What's Popular Volume 55, Number 6November 2018 CrossmarkInformationCopyright © 2018 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0021-8669 (print) or 1533-3868 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsBoundary LayersComputational Fluid DynamicsEquations of Fluid DynamicsFlow RegimesFluid DynamicsNumerical AnalysisTurbulenceTurbulence ModelsVortex Dynamics KeywordsFreestream Mach NumberReynolds Averaged Navier StokesTwo Dimensional FlowCFDEntropyBoundary Layer InteractionVorticesAngle of AttackSpalart Allmaras Turbulence ModelNumerical AnalysisAcknowledgmentsThe authors are very grateful to Daniel Destarac and Didier Bailly of ONERA for the fruitful discussions and for providing the CFD solution of the viscous test (obtained by ONERA elsA RANS solver).PDF Received8 November 2017Accepted6 May 2018Published online29 June 2018

Referência(s)
Altmetric
PlumX