Immune Correlate-Guided HIV Vaccine Design
2018; Cell Press; Volume: 24; Issue: 1 Linguagem: Inglês
10.1016/j.chom.2018.06.012
ISSN1934-6069
Autores Tópico(s)Immune Cell Function and Interaction
ResumoAlthough vaccines have been successfully developed against several pathogens, designing an effective vaccine to protect against human immunodeficiency virus (HIV) has remained an intractable challenge. To address this, the research community has looked to human and non-human primate studies to understand the correlates of protective immunity, based on which a targeted vaccine strategy may be designed. Two distinct approaches, focused on different immune correlates of protection, have emerged. The first focuses on structure-based design of HIV envelope immunogens that are able to induce antibodies that neutralize the virus. The second focuses on strategies aimed at driving non-neutralizing polyclonal and polyfunctional antibodies that engage other arms of immunity to clear the virus. Here we review these two different vaccine design strategies and posit that ultimately the convergence of these two efforts will likely be necessary for the development of a globally protective HIV vaccine. Although vaccines have been successfully developed against several pathogens, designing an effective vaccine to protect against human immunodeficiency virus (HIV) has remained an intractable challenge. To address this, the research community has looked to human and non-human primate studies to understand the correlates of protective immunity, based on which a targeted vaccine strategy may be designed. Two distinct approaches, focused on different immune correlates of protection, have emerged. The first focuses on structure-based design of HIV envelope immunogens that are able to induce antibodies that neutralize the virus. The second focuses on strategies aimed at driving non-neutralizing polyclonal and polyfunctional antibodies that engage other arms of immunity to clear the virus. Here we review these two different vaccine design strategies and posit that ultimately the convergence of these two efforts will likely be necessary for the development of a globally protective HIV vaccine. Despite the growing understanding of human immunodeficiency virus (HIV) disease pathogenesis and the structure of its key antigenic targets, efforts to develop effective vaccines against HIV (Rappuoli and Aderem, 2011Rappuoli R. Aderem A. A 2020 vision for vaccines against HIV, tuberculosis and malaria.Nature. 2011; 473: 463-469Crossref PubMed Scopus (179) Google Scholar) continue to fail (Ouattara and Laurens, 2015Ouattara A. Laurens M.B. Vaccines against malaria.Clin. Infect. Dis. 2015; 60: 930-936Crossref PubMed Scopus (43) Google Scholar). This reflects our lack of understanding of the key immunologic responses required for protection. While antibodies serve as the primary correlate of protection following most clinically approved vaccines (Delany et al., 2013Delany I. Rappuoli R. Seib K.L. Vaccines, reverse vaccinology, and bacterial pathogenesis.Cold Spring Harb. Perspect. Med. 2013; 3: a012476Crossref PubMed Google Scholar, Dormitzer et al., 2008Dormitzer P.R. Ulmer J.B. Rappuoli R. Structure-based antigen design: a strategy for next generation vaccines.Trends Biotechnol. 2008; 26: 659-667Abstract Full Text Full Text PDF PubMed Scopus (117) Google Scholar), antibody levels alone do not always represent the mechanistic correlate of immunity (Plotkin, 2008Plotkin S.A. Vaccines: correlates of vaccine-induced immunity.Clin. Infect. Dis. 2008; 47: 401-409Crossref PubMed Scopus (495) Google Scholar). Even the most sophisticated protein design approaches continue to confer only limited protection against HIV (Sanders et al., 2015Sanders R.W. van Gils M.J. Derking R. Sok D. Ketas T.J. Burger J.A. Ozorowski G. Cupo A. Simonich C. Goo L. et al.HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers.Science. 2015; 349: aac4223Crossref PubMed Scopus (308) Google Scholar), suggesting that qualitatively superior, rather than higher-magnitude, antibodies are required to provide protection from infection. Thus, it is likely that vaccine design platforms centered around the identification and induction of immunologically relevant mechanisms of HIV control, linked to antigen design strategies, may be critical for the development of effective HIV vaccines. This review examines the principles of designing a vaccine aimed at selectively augmenting immunological correlates of protection, including viral neutralization, with a specific focus on the ongoing strategies for HIV vaccine design. In the nearly four decades since the discovery of HIV as the etiologic agent of acquired immunodeficiency syndrome (AIDS), four major vaccine concepts have been tested for clinical efficacy (Corey et al., 2015Corey L. Gilbert P.B. Tomaras G.D. Haynes B.F. Pantaleo G. Fauci A.S. Immune correlates of vaccine protection against HIV-1 acquisition.Sci. Transl. Med. 2015; 7: 310rv7Crossref PubMed Scopus (113) Google Scholar, Stephenson and Barouch, 2013Stephenson K.E. Barouch D.H. A global approach to HIV-1 vaccine development.Immunol. Rev. 2013; 254: 295-304Crossref PubMed Scopus (48) Google Scholar, Stephenson et al., 2016Stephenson K.E. D'Couto H.T. Barouch D.H. New concepts in HIV-1 vaccine development.Curr. Opin. Immunol. 2016; 41: 39-46Crossref PubMed Scopus (53) Google Scholar). Of the four attempts, one focused on the induction of T cell immunity alone exhibited enhanced infections among vaccinees (Corey et al., 2009Corey L. McElrath M.J. Kublin J.G. Post-step modifications for research on HIV vaccines.AIDS. 2009; 23: 3-8Crossref PubMed Scopus (0) Google Scholar, McElrath et al., 2008McElrath M.J. De Rosa S.C. Moodie Z. Dubey S. Kierstead L. Janes H. Defawe O.D. Carter D.K. Hural J. Akondy R. et al.Step Study Protocol TeamHIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis.Lancet. 2008; 372: 1894-1905Abstract Full Text Full Text PDF PubMed Scopus (570) Google Scholar, Sekaly, 2008Sekaly R.P. The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development?.J. Exp. Med. 2008; 205: 7-12Crossref PubMed Scopus (307) Google Scholar, Steinbrook, 2007Steinbrook R. One step forward, two steps back--will there ever be an AIDS vaccine?.N. Engl. J. Med. 2007; 357: 2653-2655Crossref PubMed Scopus (0) Google Scholar), and two others demonstrated no protective effects (Francis et al., 2003Francis D.P. Heyward W.L. Popovic V. Orozco-Cronin P. Orelind K. Gee C. Hirsch A. Ippolito T. Luck A. Longhi M. et al.Candidate HIV/AIDS vaccines: lessons learned from the World's first phase III efficacy trials.AIDS. 2003; 17: 147-156Crossref PubMed Scopus (0) Google Scholar, Hammer et al., 2013Hammer S.M. Sobieszczyk M.E. Janes H. Karuna S.T. Mulligan M.J. Grove D. Koblin B.A. Buchbinder S.P. Keefer M.C. Tomaras G.D. et al.HVTN 505 Study TeamEfficacy trial of a DNA/rAd5 HIV-1 preventive vaccine.N. Engl. J. Med. 2013; 369: 2083-2092Crossref PubMed Scopus (368) Google Scholar) despite the induction of high levels of virus-specific antibodies. Conversely, one vaccine strategy showed a modest level of protection in humans, resulting in 31% protection (Rerks-Ngarm et al., 2009Rerks-Ngarm S. Pitisuttithum P. Nitayaphan S. Kaewkungwal J. Chiu J. Paris R. Premsri N. Namwat C. de Souza M. Adams E. et al.MOPH-TAVEG InvestigatorsVaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand.N. Engl. J. Med. 2009; 361: 2209-2220Crossref PubMed Scopus (2195) Google Scholar). However, despite this modest signal, this vaccine approach challenged classic dogma, as protection was observed in the absence of neutralizing antibodies and cytotoxic T cell responses. Intense immunological dissection of vaccine-induced protective and non-protective responses uncovered higher levels of non-neutralizing IgG antibodies targeting the second variable loop (V2) in the HIV envelope protein, higher levels of HIV envelope gp120-specific antibodies able to engage natural killer (NK) cells and drive antibody-dependent cellular cytotoxicity (ADCC), and lower levels of HIV envelope-specific IgA responses in protected individuals (vaccinees) (Haynes et al., 2012aHaynes B.F. Gilbert P.B. McElrath M.J. Zolla-Pazner S. Tomaras G.D. Alam S.M. Evans D.T. Montefiori D.C. Karnasuta C. Sutthent R. et al.Immune-correlates analysis of an HIV-1 vaccine efficacy trial.N. Engl. J. Med. 2012; 366: 1275-1286Crossref PubMed Scopus (1249) Google Scholar). This suggested an alternate mechanism of protection specifically involving the recruitment of innate immunity to eliminate antibody-opsonized viruses or infected cells, mechanisms known to be important for the clearance of tumor cells (Rajasekaran et al., 2015Rajasekaran N. Chester C. Yonezawa A. Zhao X. Kohrt H.E. Enhancement of antibody-dependent cell mediated cytotoxicity: a new era in cancer treatment.ImmunoTargets Ther. 2015; 4: 91-100PubMed Google Scholar, Scott et al., 2012Scott A.M. Allison J.P. Wolchok J.D. Monoclonal antibodies in cancer therapy.Cancer Immun. 2012; 12: 14PubMed Google Scholar, Wang et al., 2015Wang W. Erbe A.K. Hank J.A. Morris Z.S. Sondel P.M. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy.Front. Immunol. 2015; 6: 368Crossref PubMed Scopus (183) Google Scholar). A growing number of non-human primate (NHP) vaccine challenge studies (Barouch et al., 2012Barouch D.H. Liu J. Li H. Maxfield L.F. Abbink P. Lynch D.M. Iampietro M.J. SanMiguel A. Seaman M.S. Ferrari G. et al.Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys.Nature. 2012; 482: 89-93Crossref PubMed Scopus (352) Google Scholar, Barouch et al., 2013Barouch D.H. Stephenson K.E. Borducchi E.N. Smith K. Stanley K. McNally A.G. Liu J. Abbink P. Maxfield L.F. Seaman M.S. et al.Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys.Cell. 2013; 155: 531-539Abstract Full Text Full Text PDF PubMed Scopus (223) Google Scholar, Barouch et al., 2015Barouch D.H. Alter G. Broge T. Linde C. Ackerman M.E. Brown E.P. Borducchi E.N. Smith K.M. Nkolola J.P. Liu J. et al.Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys.Science. 2015; 349: 320-324Crossref PubMed Scopus (192) Google Scholar, Bradley et al., 2017Bradley T. Pollara J. Santra S. Vandergrift N. Pittala S. Bailey-Kellogg C. Shen X. Parks R. Goodman D. Eaton A. et al.Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge.Nat. Commun. 2017; 8: 15711Crossref PubMed Scopus (60) Google Scholar, Fouts et al., 2015Fouts T.R. Bagley K. Prado I.J. Bobb K.L. Schwartz J.A. Xu R. Zagursky R.J. Egan M.A. Eldridge J.H. LaBranche C.C. et al.Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection.Proc. Natl. Acad. Sci. USA. 2015; 112: E992-E999Crossref PubMed Scopus (83) Google Scholar, Gordon et al., 2016Gordon S.N. Liyanage N.P. Doster M.N. Vaccari M. Vargas-Inchaustegui D.A. Pegu P. Schifanella L. Shen X. Tomaras G.D. Rao M. et al.Boosting of ALVAC-SIV vaccine-primed macaques with the CD4-SIVgp120 fusion protein elicits antibodies to V2 associated with a decreased risk of SIVmac251 acquisition.J. Immunol. 2016; 197: 2726-2737Crossref PubMed Scopus (4) Google Scholar, Mohanram et al., 2016Mohanram V. Demberg T. Musich T. Tuero I. Vargas-Inchaustegui D.A. Miller-Novak L. Venzon D. Robert-Guroff M. B cell responses associated with vaccine-induced delayed SIVmac251 acquisition in female rhesus macaques.J. Immunol. 2016; 197: 2316-2324Crossref PubMed Scopus (3) Google Scholar, Roederer et al., 2014Roederer M. Keele B.F. Schmidt S.D. Mason R.D. Welles H.C. Fischer W. Labranche C. Foulds K.E. Louder M.K. Yang Z.Y. et al.Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV.Nature. 2014; 505: 502-508Crossref PubMed Scopus (104) Google Scholar) also pointed to a critical role for non-neutralizing, but functional, antibodies in protection from infection. These findings strongly support the continued efforts to define, boost, and enhance these unique non-neutralizing functional antibody signatures to increase protective immunity against HIV. In parallel, a large number of broadly neutralizing antibodies (bNAbs) with remarkable potency and breadth of global virus neutralization have been identified. Passive transfer of monoclonal bNAbs (Burton and Hangartner, 2016Burton D.R. Hangartner L. Broadly neutralizing antibodies to HIV and their role in vaccine design.Annu. Rev. Immunol. 2016; 34: 635-659Crossref PubMed Google Scholar, Burton and Mascola, 2015Burton D.R. Mascola J.R. Antibody responses to envelope glycoproteins in HIV-1 infection.Nat. Immunol. 2015; 16: 571-576Crossref PubMed Scopus (264) Google Scholar), even at low doses, has consistently shown robust protection from infection in NHP models of HIV infection (Gautam et al., 2016Gautam R. Nishimura Y. Pegu A. Nason M.C. Klein F. Gazumyan A. Golijanin J. Buckler-White A. Sadjadpour R. Wang K. et al.A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges.Nature. 2016; 533: 105-109Crossref PubMed Google Scholar, Julg et al., 2017aJulg B. Liu P.T. Wagh K. Fischer W.M. Abbink P. Mercado N.B. Whitney J.B. Nkolola J.P. McMahan K. Tartaglia L.J. et al.Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail.Sci. Transl. Med. 2017; 9: eaao4235Crossref PubMed Scopus (56) Google Scholar, Liu et al., 2016Liu J. Ghneim K. Sok D. Bosche W.J. Li Y. Chipriano E. Berkemeier B. Oswald K. Borducchi E. Cabral C. et al.Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus.Science. 2016; 353: 1045-1049Crossref PubMed Scopus (86) Google Scholar, Moldt et al., 2012Moldt B. Rakasz E.G. Schultz N. Chan-Hui P.Y. Swiderek K. Weisgrau K.L. Piaskowski S.M. Bergman Z. Watkins D.I. Poignard P. Burton D.R. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo.Proc. Natl. Acad. Sci. USA. 2012; 109: 18921-18925Crossref PubMed Scopus (316) Google Scholar, Parren et al., 2001Parren P.W. Marx P.A. Hessell A.J. Luckay A. Harouse J. Cheng-Mayer C. Moore J.P. Burton D.R. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro.J. Virol. 2001; 75: 8340-8347Crossref PubMed Scopus (575) Google Scholar, Veazey et al., 2003Veazey R.S. Shattock R.J. Pope M. Kirijan J.C. Jones J. Hu Q. Ketas T. Marx P.A. Klasse P.J. Burton D.R. Moore J.P. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120.Nat. Med. 2003; 9: 343-346Crossref PubMed Scopus (418) Google Scholar). Similar studies with monoclonal non-neutralizing antibodies have failed to confer such protection (Burton et al., 2011Burton D.R. Hessell A.J. Keele B.F. Klasse P.J. Ketas T.A. Moldt B. Dunlop D.C. Poignard P. Doyle L.A. Cavacini L. et al.Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody.Proc. Natl. Acad. Sci. USA. 2011; 108: 11181-11186Crossref PubMed Scopus (203) Google Scholar, Santra et al., 2015Santra S. Tomaras G.D. Warrier R. Nicely N.I. Liao H.X. Pollara J. Liu P. Alam S.M. Zhang R. Cocklin S.L. et al.Human non-neutralizing HIV-1 envelope monoclonal antibodies limit the number of founder viruses during SHIV mucosal infection in Rhesus Macaques.PLoS Pathog. 2015; 11: e1005042Crossref PubMed Scopus (86) Google Scholar). However, monoclonals expressed in cell lines largely lack the ability to drive antibody effector functions, including ADCC (Chung et al., 2014aChung A.W. Crispin M. Pritchard L. Robinson H. Gorny M.K. Yu X. Bailey-Kellogg C. Ackerman M.E. Scanlan C. Zolla-Pazner S. Alter G. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function.AIDS. 2014; 28: 2523-2530Crossref PubMed Scopus (63) Google Scholar, Kanda et al., 2006Kanda Y. Yamane-Ohnuki N. Sakai N. Yamano K. Nakano R. Inoue M. Misaka H. Iida S. Wakitani M. Konno Y. et al.Comparison of cell lines for stable production of fucose-negative antibodies with enhanced ADCC.Biotechnol. Bioeng. 2006; 94: 680-688Crossref PubMed Scopus (0) Google Scholar, Konno et al., 2012Konno Y. Kobayashi Y. Takahashi K. Takahashi E. Sakae S. Wakitani M. Yamano K. Suzawa T. Yano K. Ohta T. et al.Fucose content of monoclonal antibodies can be controlled by culture medium osmolality for high antibody-dependent cellular cytotoxicity.Cytotechnology. 2012; 64: 249-265Crossref PubMed Scopus (0) Google Scholar, Stadlmann et al., 2008Stadlmann J. Pabst M. Kolarich D. Kunert R. Altmann F. Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides.Proteomics. 2008; 8: 2858-2871Crossref PubMed Scopus (190) Google Scholar), due to the generation of non-functional Fc-glycans, potentially contributing to reduced efficacy of non-neutralizing antibodies in vivo. Specifically, cell line (CHO or 293T)-derived antibodies bear Fc-glycosylation profiles that are distinct from those found on antibodies from spontaneous HIV controllers (Ackerman et al., 2013Ackerman M.E. Crispin M. Yu X. Baruah K. Boesch A.W. Harvey D.J. Dugast A.S. Heizen E.L. Ercan A. Choi I. et al.Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity.J. Clin. Invest. 2013; 123: 2183-2192Crossref PubMed Scopus (179) Google Scholar), which possess robust antibody effector functions (Ackerman et al., 2016Ackerman M.E. Mikhailova A. Brown E.P. Dowell K.G. Walker B.D. Bailey-Kellogg C. Suscovich T.J. Alter G. Polyfunctional HIV-specific antibody responses are associated with spontaneous HIV control.PLoS Pathog. 2016; 12: e1005315Crossref PubMed Scopus (133) Google Scholar), or on monoclonal therapeutics produced in glycan-engineered cell lines aimed at specifically enhancing ADCC (Kanda et al., 2007Kanda Y. Yamada T. Mori K. Okazaki A. Inoue M. Kitajima-Miyama K. Kuni-Kamochi R. Nakano R. Yano K. Kakita S. et al.Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types.Glycobiology. 2007; 17: 104-118Crossref PubMed Scopus (253) Google Scholar). Even neutralizing antibodies appear to employ the Fc-domain to leverage innate immune function to prevent infection (Bournazos et al., 2014Bournazos S. Klein F. Pietzsch J. Seaman M.S. Nussenzweig M.C. Ravetch J.V. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity.Cell. 2014; 158: 1243-1253Abstract Full Text Full Text PDF PubMed Scopus (257) Google Scholar, Gautam et al., 2018Gautam R. Nishimura Y. Gaughan N. Gazumyan A. Schoofs T. Buckler-White A. Seaman M.S. Swihart B.J. Follmann D.A. Nussenzweig M.C. Martin M.A. A single injection of crystallizable fragment domain-modified antibodies elicits durable protection from SHIV infection.Nat. Med. 2018; 24: 610-616Crossref PubMed Scopus (46) Google Scholar, Hessell et al., 2007Hessell A.J. Hangartner L. Hunter M. Havenith C.E. Beurskens F.J. Bakker J.M. Lanigan C.M. Landucci G. Forthal D.N. Parren P.W. et al.Fc receptor but not complement binding is important in antibody protection against HIV.Nature. 2007; 449: 101-104Crossref PubMed Scopus (629) Google Scholar). These data point to a synergistic role for both ends of the antibody for protection against HIV (Bournazos et al., 2014Bournazos S. Klein F. Pietzsch J. Seaman M.S. Nussenzweig M.C. Ravetch J.V. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity.Cell. 2014; 158: 1243-1253Abstract Full Text Full Text PDF PubMed Scopus (257) Google Scholar, Hessell et al., 2007Hessell A.J. Hangartner L. Hunter M. Havenith C.E. Beurskens F.J. Bakker J.M. Lanigan C.M. Landucci G. Forthal D.N. Parren P.W. et al.Fc receptor but not complement binding is important in antibody protection against HIV.Nature. 2007; 449: 101-104Crossref PubMed Scopus (629) Google Scholar). Thus two major parallel tracks for HIV vaccine development are being explored (Figure 1). One approach involves the design of vaccines to induce neutralizing antibodies (Burton et al., 2012Burton D.R. Ahmed R. Barouch D.H. Butera S.T. Crotty S. Godzik A. Kaufmann D.E. McElrath M.J. Nussenzweig M.C. Pulendran B. et al.A blueprint for HIV vaccine discovery.Cell Host Microbe. 2012; 12: 396-407Abstract Full Text Full Text PDF PubMed Scopus (255) Google Scholar), while a second approach focuses on the design of vaccines to drive functional antiviral non-neutralizing antibodies (Gray et al., 2016Gray G.E. Laher F. Lazarus E. Ensoli B. Corey L. Approaches to preventative and therapeutic HIV vaccines.Curr. Opin. Virol. 2016; 17: 104-109Crossref PubMed Google Scholar, Stephenson and Barouch, 2013Stephenson K.E. Barouch D.H. A global approach to HIV-1 vaccine development.Immunol. Rev. 2013; 254: 295-304Crossref PubMed Scopus (48) Google Scholar, Stephenson et al., 2016Stephenson K.E. D'Couto H.T. Barouch D.H. New concepts in HIV-1 vaccine development.Curr. Opin. Immunol. 2016; 41: 39-46Crossref PubMed Scopus (53) Google Scholar). Here we propose that the integration of these two approaches is likely to have the highest probability of success. Over the past decade, the extraordinary pace of bNAb discovery has led to the identification of a limited number of sites of neutralization vulnerability on the HIV envelope (Burton and Hangartner, 2016Burton D.R. Hangartner L. Broadly neutralizing antibodies to HIV and their role in vaccine design.Annu. Rev. Immunol. 2016; 34: 635-659Crossref PubMed Google Scholar, Burton and Mascola, 2015Burton D.R. Mascola J.R. Antibody responses to envelope glycoproteins in HIV-1 infection.Nat. Immunol. 2015; 16: 571-576Crossref PubMed Scopus (264) Google Scholar, Kovacs et al., 2014Kovacs J.M. Noeldeke E. Ha H.J. Peng H. Rits-Volloch S. Harrison S.C. Chen B. Stable, uncleaved HIV-1 envelope glycoprotein gp140 forms a tightly folded trimer with a native-like structure.Proc. Natl. Acad. Sci. USA. 2014; 111: 18542-18547Crossref PubMed Scopus (42) Google Scholar). However, while sophisticated advances in our understanding of HIV envelope structure have revolutionized our capacity to make immunogens that limit exposure to distracting (Rutten et al., 2018Rutten L. Lai Y.T. Blokland S. Truan D. Bisschop I.J.M. Strokappe N.M. Koornneef A. van Manen D. Chuang G.Y. Farney S.K. et al.A universal Approach to optimize the folding and stability of prefusion-closed HIV-1 envelope trimers.Cell Rep. 2018; 23: 584-595Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar, Sanders et al., 2015Sanders R.W. van Gils M.J. Derking R. Sok D. Ketas T.J. Burger J.A. Ozorowski G. Cupo A. Simonich C. Goo L. et al.HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers.Science. 2015; 349: aac4223Crossref PubMed Scopus (308) Google Scholar) non-neutralizing sites on the viral envelope, these antigens continue to fail to drive neutralizing antibodies with sufficient magnitude and breadth of neutralization in preclinical studies (Kovacs et al., 2014Kovacs J.M. Noeldeke E. Ha H.J. Peng H. Rits-Volloch S. Harrison S.C. Chen B. Stable, uncleaved HIV-1 envelope glycoprotein gp140 forms a tightly folded trimer with a native-like structure.Proc. Natl. Acad. Sci. USA. 2014; 111: 18542-18547Crossref PubMed Scopus (42) Google Scholar, Sanders et al., 2015Sanders R.W. van Gils M.J. Derking R. Sok D. Ketas T.J. Burger J.A. Ozorowski G. Cupo A. Simonich C. Goo L. et al.HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers.Science. 2015; 349: aac4223Crossref PubMed Scopus (308) Google Scholar). These monoclonal bNAbs have pointed to the need for extensive somatic hypermutation, mutations in framework regions, and the selection of rare long CDR3 loops (Burton et al., 2012Burton D.R. Ahmed R. Barouch D.H. Butera S.T. Crotty S. Godzik A. Kaufmann D.E. McElrath M.J. Nussenzweig M.C. Pulendran B. et al.A blueprint for HIV vaccine discovery.Cell Host Microbe. 2012; 12: 396-407Abstract Full Text Full Text PDF PubMed Scopus (255) Google Scholar, Burton and Mascola, 2015Burton D.R. Mascola J.R. Antibody responses to envelope glycoproteins in HIV-1 infection.Nat. Immunol. 2015; 16: 571-576Crossref PubMed Scopus (264) Google Scholar) as key to targeting sites of viral neutralization. These unusual characteristics, some that are naturally typically eliminated during normal B cell development (Haynes et al., 2005Haynes B.F. Fleming J. St Clair E.W. Katinger H. Stiegler G. Kunert R. Robinson J. Scearce R.M. Plonk K. Staats H.F. et al.Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies.Science. 2005; 308: 1906-1908Crossref PubMed Scopus (596) Google Scholar, Haynes et al., 2012bHaynes B.F. Kelsoe G. Harrison S.C. Kepler T.B. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study.Nat. Biotechnol. 2012; 30: 423-433Crossref PubMed Scopus (302) Google Scholar, Verkoczy et al., 2013Verkoczy L. Chen Y. Zhang J. Bouton-Verville H. Newman A. Lockwood B. Scearce R.M. Montefiori D.C. Dennison S.M. Xia S.M. et al.Induction of HIV-1 broad neutralizing antibodies in 2F5 knock-in mice: selection against membrane proximal external region-associated autoreactivity limits T-dependent responses.J. Immunol. 2013; 191: 2538-2550Crossref PubMed Scopus (0) Google Scholar), represent critical obstacles for the elicitation of these bNAbs. Nevertheless, passive transfer of multiple broadly neutralizing antibodies in NHPs consistently provides protection from infection (Gautam et al., 2016Gautam R. Nishimura Y. Pegu A. Nason M.C. Klein F. Gazumyan A. Golijanin J. Buckler-White A. Sadjadpour R. Wang K. et al.A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges.Nature. 2016; 533: 105-109Crossref PubMed Google Scholar, Hessell et al., 2009Hessell A.J. Rakasz E.G. Poignard P. Hangartner L. Landucci G. Forthal D.N. Koff W.C. Watkins D.I. Burton D.R. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers.PLoS Pathog. 2009; 5: e1000433Crossref PubMed Scopus (391) Google Scholar, Julg et al., 2017aJulg B. Liu P.T. Wagh K. Fischer W.M. Abbink P. Mercado N.B. Whitney J.B. Nkolola J.P. McMahan K. Tartaglia L.J. et al.Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail.Sci. Transl. Med. 2017; 9: eaao4235Crossref PubMed Scopus (56) Google Scholar, Julg et al., 2017bJulg B. Sok D. Schmidt S.D. Abbink P. Newman R.M. Broge T. Linde C. Nkolola J. Le K. Su D. et al.Protective efficacy of broadly neutralizing antibodies with incomplete neutralization activity against simian-human immunodeficiency virus in rhesus monkeys.J. Virol. 2017; 91 (e01187-17)Crossref Scopus (19) Google Scholar, Liu et al., 2016Liu J. Ghneim K. Sok D. Bosche W.J. Li Y. Chipriano E. Berkemeier B. Oswald K. Borducchi E. Cabral C. et al.Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus.Science. 2016; 353: 1045-1049Crossref PubMed Scopus (86) Google Scholar, Moldt et al., 2012Moldt B. Rakasz E.G. Schultz N. Chan-Hui P.Y. Swiderek K. Weisgrau K.L. Piaskowski S.M. Bergman Z. Watkins D.I. Poignard P. Burton D.R. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo.Proc. Natl. Acad. Sci. USA. 2012; 109: 18921-18925Crossref PubMed Scopus (316) Google Scholar, Parren et al., 2001Parren P.W. Marx P.A. Hessell A.J. Luckay A. Harouse J. Cheng-Mayer C. Moore J.P. Burton D.R. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro.J. Virol. 2001; 75: 8340-8347Crossref PubMed Scopus (575) Google Scholar, Veazey et al., 2003Veazey R.S. Shattock R.J. Pope M. Kirijan J.C. Jones J. Hu Q. Ketas T. Marx P.A. Klasse P.J. Burton D.R. Moore J.P. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120.Nat. Med. 2003; 9: 343-346Crossref PubMed Scopus (418) Google Scholar). However, recent data suggest that the induction of a single bNAb is unlikely to provide sufficiently broad protection (Julg et al., 2017aJulg B. Liu P.T. Wagh K. Fischer W.M. Abbink P. Mercado N.B. Whitney J.B. Nkolola J.P. McMahan K. Tartaglia L.J. et al.Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail.Sci. Transl. Med. 2017; 9: eaao4235Crossref PubMed Scopus (56) Google Scholar), and instead a number of epitopes will likely have to be targeted simultaneously to achieve optimal protection against global HIV quasispecies. Furthermore, in-depth characterization of bNAbs suggests that extensive somatic hypermutation (Burton and Hangartner, 2016Burton D.R. Hangartner L. Broadly neutralizing antibodies to HIV and their role in vaccine design.Annu. Rev. Immunol. 2016; 34: 635-659Crossref PubMed Google Scholar, Klein et al., 2013Klein F. Diskin R. Scheid J.F. Gaebler C. Mouquet H. Georgiev I.S. Pancera M. Zhou T. Incesu R.B. Fu B.Z. et al.Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization.Cell. 2013; 153: 126-138Abstract Full Text Full Text PDF PubMed Scopus (302) Google Scholar) will be required to achieve the unusual contacts with the envelope protein and the overlaying network of glycans to broadly recognize and block global HIV variants. HIV vaccine researchers have proposed several strategies to drive bNAbs that make the unusual contacts (angle of attack and minimal s
Referência(s)