Total Hemispherical Apparent Radiative Properties of the Infinite V-Groove with Diffuse Reflection
2018; American Institute of Aeronautics and Astronautics; Volume: 32; Issue: 4 Linguagem: Inglês
10.2514/1.t5485
ISSN1533-6808
AutoresRydge B. Mulford, Nathan Collins, Michael S. Farnsworth, Matthew R. Jones, Brian D. Iverson,
Tópico(s)Urban Heat Island Mitigation
ResumoNo AccessTechnical NoteTotal Hemispherical Apparent Radiative Properties of the Infinite V-Groove with Diffuse ReflectionRydge B. Mulford, Nathan S. Collins, Michael S. Farnsworth, Matthew R. Jones and Brian D. IversonRydge B. MulfordBrigham Young University, Provo, Utah 84602, Nathan S. CollinsBrigham Young University, Provo, Utah 84602, Michael S. FarnsworthBrigham Young University, Provo, Utah 84602, Matthew R. JonesBrigham Young University, Provo, Utah 84602 and Brian D. IversonBrigham Young University, Provo, Utah 84602Published Online:1 Aug 2018https://doi.org/10.2514/1.T5485SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Blanc M. J., Mulford R. B., Jones M. R. and Iverson B. D., "Infrared Visualization of the Cavity Effect Using Origami-Inspired Surfaces," Journal of Heat Transfer, Vol. 138, No. 2, 2016, Paper 020901. doi:https://doi.org/10.1115/1.4032229 JHTRAO 0022-1481 CrossrefGoogle Scholar[2] Mulford R. B., Jones M. R. and Iverson B. D., "Dynamic Control of Radiative Surface Properties with Origami-Inspired Design," Journal of Heat Transfer, Vol. 138, No. 3, 2015, Paper 032701. doi:https://doi.org/10.1115/1.4031749 JHTRAO 0022-1481 CrossrefGoogle Scholar[3] Iverson B. D., Mulford R. B., Lee E. T. and Jones M. R., "Adaptive Net Radiative Heat Transfer and Thermal Management with Origami-Structured Surfaces," 16th International Heat Transfer Conference, Heat & Mass Transfer Soc. of China Paper IHTC16-23600, Beijing, Aug. 2018. Google Scholar[4] Lang F., Wang H., Zhang S., Liu J. and Yan H., "Review on Variable Emissivity Materials and Devices Based on Smart Chromism," International Journal of Thermophysics, Vol. 39, 2018, p. 6. doi:https://doi.org/10.1007/s10765-017-2329-0 IJTHDY 0195-928X CrossrefGoogle Scholar[5] Liu Y., Qiu J., Zhao J. and Liu L., "General Design Method of Ultra-Broadband Perfect Absorbers Based on Magnetic Polaritons," Optics Express, Vol. 25, No. 20, 2017, pp. A980–A989. doi:https://doi.org/10.1364/OE.25.00A980 CrossrefGoogle Scholar[6] Sergeant N. P., Agrawal M. and Peumans P., "High Performance Solar Selective Absorbers Using Coated Sub Wavelength Gratings," Optics Express, Vol. 18, No. 6, 2010, pp. 5525–5540. doi:https://doi.org/10.1364/OE.18.005525 CrossrefGoogle Scholar[7] Huang Z. and Ruan X., "Nanoparticle Embedded Double-Layer Coating for Daytime Radiative Cooling," International Journal of Heat and Mass Transfer, Vol. 104, Jan. 2017, pp. 890–896. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.009 IJHMAK 0017-9310 CrossrefGoogle Scholar[8] Vall S. and Castell A., "Radiative Cooling as Low-Grade Energy Source: A Literature Review," Renewable and Sustainable Energy Reviews, Vol. 77, Sept. 2017, pp. 803–820. doi:https://doi.org/10.1016/j.rser.2017.04.010 CrossrefGoogle Scholar[9] Benkahoul M., Chaker M., Margot J., Haddad E., Kruzelecky R., Wong B., Jamroz W. and Poinas P., "Thermochromic VO2 Film Deposited on Al with Tunable Thermal Emissivity for Space Applications," Solar Energy Materials and Solar Cells, Vol. 95, No. 12, 2011, pp. 3504–3508. doi:https://doi.org/10.1016/j.solmat.2011.08.014 SEMCEQ 0927-0248 CrossrefGoogle Scholar[10] Sparrow E. M. and Lin S. H., "Absorption of Thermal Radiation in a V-Groove Cavity," International Journal of Heat and Mass Transfer, Vol. 5, No. 11, 1962, pp. 1111–1115. doi:https://doi.org/10.1016/0017-9310(62)90064-9 IJHMAK 0017-9310 CrossrefGoogle Scholar[11] Sparrow E. M. and Lin S. H., "Radiation Heat Transfer at a Surface Having Both Specular and Diffuse Reflectance Components," International Journal of Heat and Mass Transfer, Vol. 8, No. 5, 1965, pp. 769–779. doi:https://doi.org/10.1016/0017-9310(65)90023-2 IJHMAK 0017-9310 CrossrefGoogle Scholar[12] Zipin R. B., "The Directional Spectral Reflectance of Well Characterized Symmetric V Grooved Surfaces," Ph.D., Purdue Univ., West Lafayette, IN, 1965. Google Scholar[13] Zipin R. B., "The Apparent Thermal Radiation Properties of an Isothermal V-Groove with Specularly Reflecting Walls," Journal of Research of the National Bureau of Standards, Vol. 70c, No. 4, 1966, pp. 275–280. doi:https://doi.org/10.6028/jres.070C.026 Google Scholar[14] Black W. Z., "Optimization of Directional Emission from V-Groove and Rectangular Cavities," Journal of Heat Transfer, Vol. 95, No. 1, 1973, pp. 31–36. doi:https://doi.org/10.1115/1.3450000 JHTRAO 0022-1481 CrossrefGoogle Scholar[15] Black W. Z. and Schoenhals R. J., "A Study of Directional Radiation Properties of Specially Prepared V-Groove Cavities," Journal of Heat Transfer, Vol. 90, No. 4, 1968, pp. 420–428. doi:https://doi.org/10.1115/1.3597537 JHTRAO 0022-1481 CrossrefGoogle Scholar[16] Modest M. F., Radiative Heat Transfer, Academic Press, New York, 2013, pp. 211–212. CrossrefGoogle Scholar[17] Hollands K. G. T., "Directional Selectivity, Emittance, and Absorptance Properties of Vee Corrugated Specular Surfaces," Solar Energy, Vol. 7, No. 3, 1963, pp. 108–116. doi:https://doi.org/10.1016/0038-092X(63)90036-7 SRENA4 0038-092X CrossrefGoogle Scholar[18] Mulford R. B., Collins N. S., Farnsworth M. S., Jones M. R. and Iverson B. D., "Total Hemispherical Apparent Radiative Properties of the Infinite V-Groove with Specular Reflection," International Journal of Heat and Mass Transfer, Vol. 124, Sept. 2018, pp. 168–176. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.041 IJHMAK 0017-9310 CrossrefGoogle Scholar[19] Yang Y. and Wang L., "Spectrally Enhancing Near-Field Radiative Transfer Between Metallic Gratings by Exciting Magnetic Polaritons in Nanometric Vacuum Gaps," Physical Review Letters, Vol. 117, No. 4, 2016, Paper 044301. doi:https://doi.org/10.1103/PhysRevLett.117.044301 CrossrefGoogle Scholar[20] Sapritsky V. I. and Prokhorov A. V., "Calculation of the Effective Emissivities of Specular Diffuse Cavities by the Monte Carlo Method," Metrologia, Vol. 29, No. 1, 1992, pp. 9–14. doi:https://doi.org/10.1088/0026-1394/29/1/003 MTRGAU 0026-1394 CrossrefGoogle Scholar[21] Prokhorov A. V., "Monte Carlo Method in Optical Radiometry," Metrologia, Vol. 35, No. 4, 1998, pp. 465–471. doi:https://doi.org/10.1088/0026-1394/35/4/44 MTRGAU 0026-1394 CrossrefGoogle Scholar[22] Prokhorov A. V., Hanssen L. M. and Mekhontsev S. N., "Calculation of the Radiation Characteristics of Blackbody Radiation Sources," Experimental Methods in the Physical Sciences, Vol. 42, 2009, pp. 181–240. doi:https://doi.org/10.1016/S1079-4042(09)04205-2 CrossrefGoogle Scholar[23] Tang K., Dimmena R. A. and Buckius R. O., "Regions of Validity of the Geometric Optics Approximation for Angular Scattering from Very Rough Surfaces," International Journal of Heat and Mass Transfer, Vol. 40, No. 1, 1996, pp. 49–59. doi:https://doi.org/10.1016/S0017-9310(96)00073-7 IJHMAK 0017-9310 CrossrefGoogle Scholar[24] Steinfeld A., "Apparent Absorptance for Diffusely and Specularly Reflecting Spherical Cavities," International Journal of Heat and Mass Transfer, Vol. 34, No. 7, 1990, pp. 1895–1897. doi:https://doi.org/10.1016/0017-9310(91)90163-9 IJHMAK 0017-9310 CrossrefGoogle Scholar[25] Foley J., van Dam A., Feiner S. and Hughes J., "Clipping Lines," Computer Graphics, Addison-Wesley Professional, Boston, MA, 2013. Google Scholar[26] Ohwada Y., "Mathematical Proof of an Extended Kirchhoff Law for a Cavity Having Direction-Dependent Characteristics," Journal of the Optical Society of America, Vol. 5, No. 1, 1988, pp. 141–145. doi:https://doi.org/10.1364/JOSAA.5.000141 JOSAAH 0030-3941 CrossrefGoogle Scholar[27] Navidi W., Statistics for Engineers and Scientists, McGraw-Hill, New York, 2010, p. 21. Google Scholar[28] Psarouthakis J., "Apparent Thermal Emissivity from Surfaces with Multiple V-Shaped Grooves," AIAA Journal, Vol. 1, No. 8, 1963, pp. 1879–1882. doi:https://doi.org/10.2514/3.1939 AIAJAH 0001-1452 LinkGoogle Scholar[29] Howell J. R., Siegel R. and Menguc M. P., Thermal Radiation Heat Transfer, CRC Press, Boca Raton, FL, 2011. Google Scholar[30] Sparrow E. M., Gregg J. L., Svel J. V. and Manos P., "Analysis, Results and Interpretation for Radiation Between Some Simply-Arranged Gray Surfaces," Journal of Heat Transfer, Vol. 83, No. 2, 1961, pp. 207–214. doi:https://doi.org/10.1115/1.3680523 JHTRAO 0022-1481 CrossrefGoogle Scholar[31] More J. J., "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, Vol. 630, Lecture Notes in Mathematics, edited by Watson G. A., Springer, Berlin, 1978. CrossrefGoogle Scholar[32] Oliphant T. E., "Python for Scientific Computing," Computing in Science and Engineering, Vol. 9, No. 3, 2007, pp. 10–20. doi:https://doi.org/10.1109/MCSE.2007.58 CSENFA 1521-9615 CrossrefGoogle Scholar[33] Sparrow E. M., "Radiant Emission Absorption and Transmission Characteristics of Cavities and Passages," NASA Special Rept. NASA SP-55/19650017263, 1965, pp. 103–115. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byMeasured spectral, directional radiative behavior of corrugated surfacesInternational Journal of Heat and Mass Transfer, Vol. 202Solar Energy Management Using a V-Groove: An Approach Based on a Multiple Optical Path Algorithm12 September 2022 | Technologies, Vol. 10, No. 5Reversible sequin fabrics as variable emittance surfacesInternational Journal of Heat and Mass Transfer, Vol. 183Electric Transverse Emissivity of Sinusoidal Surfaces Determined by a Differential Method: Comparison with Approximation of Geometric OpticsInternational Journal of Differential Equations, Vol. 2021Experimental demonstration of heat loss and turn-down ratio for a multi-panel, actively deployed radiatorApplied Thermal Engineering, Vol. 178Heat transfer, efficiency and turn-down ratio of a dynamic radiative heat exchangerInternational Journal of Heat and Mass Transfer, Vol. 143Control of Net Radiative Heat Transfer With a Variable-Emissivity Accordion Tessellation30 January 2019 | Journal of Heat Transfer, Vol. 141, No. 3Total hemispherical apparent radiative properties of the infinite V-groove with specular reflectionInternational Journal of Heat and Mass Transfer, Vol. 124 What's Popular Volume 32, Number 4October 2018Special Section on Ab Initio Approaches for Nonequilibrium Flows CrossmarkInformationCopyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0887-8722 (print) or 1533-6808 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsCooling TechnologyHeat TransferHeating SystemHeating, Ventilating, and Air ConditioningRadiative Heat TransferRadiative HeatingThermal Control and ProtectionThermal RadiationThermodynamic PropertiesThermodynamicsThermophysics and Heat Transfer KeywordsAbsorptivityEmissivitySurface PropertiesData CorrelationThermal Management SystemConservation of EnergyRadiant EnergyStefan Boltzmann ConstantMonte Carlo SimulationRadiative Heat TransferAcknowledgmentsThis material is based upon work supported by a NASA Space Technology Research Fellowship (grant number NNX15AP49H) and the National Science Foundation (grant number 1749395).PDF Received1 March 2018Accepted12 May 2018Published online1 August 2018
Referência(s)