Artigo Revisado por pares

Big data and machine learning in critical care: Opportunities for collaborative research

2018; Elsevier BV; Volume: 43; Issue: 1 Linguagem: Espanhol

10.1016/j.medin.2018.06.002

ISSN

1697-154X

Autores

Antonio Núñez Reiz, F. Martínez Sagasti, Manuel Álvarez González, Antonio Blesa Malpica, Juan Carlos Martín Benítez, Mercedes Nieto, Ángela del Pino Ramírez, José Miguel Gil Perdomo, Jesús Prada Alonso, Leo Anthony Celi, Miguel Ángel Armengol de la Hoz, Rodrigo Octávio Deliberato, Kenneth Paik, Tom Pollard, Jesse D. Raffa, Felipe Torres, Julio Mayol, Joan Cháfer, Arturo González Ferrer, A. Rey, Henar González Luengo, Giuseppe Fico, Ivana Lombroni, Liss Hernández, Laura Lopez-Perez, Beatriz Merino‐Barbancho, María Fernanda Cabrera-Umpiérrez, María Teresa Arredondo, María Bodí, Josep Gómez, Alejandro Rodríguez, Miguel Sánchez García,

Tópico(s)

Artificial Intelligence in Healthcare

Resumo

The introduction of clinical information systems (CIS) in Intensive Care Units (ICUs) offers the possibility of storing a huge amount of machine-ready clinical data that can be used to improve patient outcomes and the allocation of resources, as well as suggest topics for randomized clinical trials. Clinicians, however, usually lack the necessary training for the analysis of large databases. In addition, there are issues referred to patient privacy and consent, and data quality. Multidisciplinary collaboration among clinicians, data engineers, machine-learning experts, statisticians, epidemiologists and other information scientists may overcome these problems. A multidisciplinary event (Critical Care Datathon) was held in Madrid (Spain) from 1 to 3 December 2017. Under the auspices of the Spanish Critical Care Society (SEMICYUC), the event was organized by the Massachusetts Institute of Technology (MIT) Critical Data Group (Cambridge, MA, USA), the Innovation Unit and Critical Care Department of San Carlos Clinic Hospital, and the Life Supporting Technologies group of Madrid Polytechnic University. After presentations referred to big data in the critical care environment, clinicians, data scientists and other health data science enthusiasts and lawyers worked in collaboration using an anonymized database (MIMIC III). Eight groups were formed to answer different clinical research questions elaborated prior to the meeting. The event produced analyses for the questions posed and outlined several future clinical research opportunities. Foundations were laid to enable future use of ICU databases in Spain, and a timeline was established for future meetings, as an example of how big data analysis tools have tremendous potential in our field. La aparición de los sistemas de información clínica (SIC) en el entorno de los cuidados intensivos brinda la posibilidad de almacenar una ingente cantidad de datos clínicos en formato electrónico durante el ingreso de los pacientes. Estos datos pueden ser empleados posteriormente para obtener respuestas a preguntas clínicas, para su uso en la gestión de recursos o para sugerir líneas de investigación que luego pueden ser explotadas mediante ensayos clínicos aleatorizados. Sin embargo, los médicos clínicos carecen de la formación necesaria para la explotación de grandes bases de datos, lo que supone un obstáculo para aprovechar esta oportunidad. Además, existen cuestiones de índole legal (seguridad, privacidad, consentimiento de los pacientes) que deben ser abordadas para poder utilizar esta potente herramienta. El trabajo multidisciplinar con otros profesionales (analistas de datos, estadísticos, epidemiólogos, especialistas en derecho aplicado a grandes bases de datos), puede resolver estas cuestiones y permitir utilizar esta herramienta para investigación clínica o análisis de resultados (benchmarking). Se describe la reunión multidisciplinar (Critical Care Datathon) realizada en Madrid los días 1, 2 y 3 de diciembre de 2017. Esta reunión, celebrada bajo los auspicios de la Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias (SEMICYUC) entre otros, fue organizada por el Massachusetts Institute of Technology (MIT), la Unidad de Innovación y el Servicio de Medicina Intensiva del Hospital Clínico San Carlos, así como el grupo de investigación «Life Supporting Technologies» de la Universidad Politécnica de Madrid. Tras unas ponencias de formación sobre big data, seguridad y calidad de los datos, y su aplicación al entorno de la medicina intensiva, un grupo de clínicos, analistas de datos, estadísticos, expertos en seguridad informática de datos realizaron sesiones de trabajo colaborativo en grupos utilizando una base de datos reales anonimizada (MIMIC III), para analizar varias preguntas clínicas establecidas previamente a la reunión. El trabajo colaborativo permitió establecer resultados relevantes con respecto a las preguntas planteadas y esbozar varias líneas de investigación clínica a desarrollar en el futuro. Además, se sentaron las bases para poder utilizar las bases de datos de las UCI con las que contamos en España, y se estableció un calendario de trabajo para planificar futuras reuniones contando con los datos de nuestras unidades. El empleo de herramientas de big data y el trabajo colaborativo con otros profesionales puede permitir ampliar los horizontes en aspectos como el control de calidad de nuestra labor cotidiana, la comparación de resultados entre unidades o la elaboración de nuevas líneas de investigación clínica.

Referência(s)
Altmetric
PlumX