Revisão Acesso aberto Revisado por pares

Lessons learned from the study of human inborn errors of innate immunity

2018; Elsevier BV; Volume: 143; Issue: 2 Linguagem: Inglês

10.1016/j.jaci.2018.07.013

ISSN

1097-6825

Autores

Giorgia Bucciol, Leen Moens, Barbara Bosch, Xavier Bossuyt, Jean‐Laurent Casanova, Anne Puel, Isabelle Meyts,

Tópico(s)

Parvovirus B19 Infection Studies

Resumo

Innate immunity contributes to host defense through all cell types and relies on their shared germline genetic background, whereas adaptive immunity operates through only 3 main cell types, αβ T cells, γδ T cells, and B cells, and relies on their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity often underlie infectious diseases. The range and nature of infections depend on the mutated gene, the deleteriousness of the mutation, and other ill-defined factors. Most known inborn errors of innate immunity to infection disrupt the development or function of leukocytes other than T and B cells, but a growing number of inborn errors affect cells other than circulating and tissue leukocytes. Here we review inborn errors of innate immunity that have been recently discovered or clarified. We highlight the immunologic implications of these errors. Innate immunity contributes to host defense through all cell types and relies on their shared germline genetic background, whereas adaptive immunity operates through only 3 main cell types, αβ T cells, γδ T cells, and B cells, and relies on their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity often underlie infectious diseases. The range and nature of infections depend on the mutated gene, the deleteriousness of the mutation, and other ill-defined factors. Most known inborn errors of innate immunity to infection disrupt the development or function of leukocytes other than T and B cells, but a growing number of inborn errors affect cells other than circulating and tissue leukocytes. Here we review inborn errors of innate immunity that have been recently discovered or clarified. We highlight the immunologic implications of these errors. Innate immunity is a germline-encoded system that enables eukaryotes to defend themselves against infection.1Beutler B.A. TLRs and innate immunity.Blood. 2009; 113: 1399-1407Crossref PubMed Scopus (463) Google Scholar, 2Ronald P. Beutler B. Plant and animal sensors of conserved microbial signatures.Science. 2010; 330: 1061-1064Crossref PubMed Scopus (156) Google Scholar It consists of 3 main components: (1) anatomic barriers, such as the physical barrier of intact skin and the chemical barrier of low gastric pH; (2) soluble proteins secreted onto mucosal surfaces or into the bloodstream, such as complement factors; and (3) a cellular compartment composed of both hematopoietic and nonhematopoietic cells. Antigen-presenting cells (APCs), such as dendritic cells (DCs); phagocytes, such as neutrophils; cytotoxic/cytolytic cells, such as natural killer (NK) cells; and other innate lymphoid cells (ILCs), together with nonhematopoietic cells, such as fibroblasts, keratinocytes, epithelial cells, and neurons, harbor pathways that allow an adequate response to infection. Pathogens are first detected through innate immune sensors or receptors. Several classes of microbial receptors have been described: Toll-like receptors (TLRs), retinoic acid–inducible protein 1 (RIG-I)–like receptors (RLRs), Nod-like receptors, C-type lectin receptors (CLRs), and DNA sensors.3Kaisho T. Akira S. Toll-like receptor function and signaling.J Allergy Clin Immunol. 2006; 117: 979-987Abstract Full Text Full Text PDF PubMed Scopus (571) Google Scholar, 4Sancho-Shimizu V. Perez de Diego R. Jouanguy E. Zhang S.Y. Casanova J.L. Inborn errors of anti-viral interferon immunity in humans.Curr Opin Virol. 2011; 1: 487-496Crossref PubMed Scopus (66) Google Scholar, 5O'Neill L. Golenbock D. Bowie A.G. The history of Toll-like receptors—redefining innate immunity.Nat Rev Immunol. 2013; 13: 453-460Crossref PubMed Scopus (0) Google Scholar These receptors recognize microbial structures, such as lipoproteins, LPS, flagellin, peptidoglycan, or microbial nucleic acids. Recognition activates downstream signaling cascades, leading to a rapid (occurring within hours) but short-lived immune response. This early immune response enables the host to survive until an adaptive response is generated, but its excessive activation can trigger autoinflammation, which is defined as damage caused by dysregulated innate immune cells to host tissues.6Masters S. Simon A. Aksentijevich I. Kastner D.L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease.Annu Rev Immunol. 2009; 27: 621-668Crossref PubMed Scopus (642) Google Scholar, 7Tosi M.F. Innate immune responses to infection.J Allergy Clin Immunol. 2005; 116: 241-249Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar Cell-intrinsic immunity is a branch of innate immunity in which a set of cellular antimicrobial defenses protects individual hematopoietic and nonhematopoietic cells against microbes, especially viruses, through autocrine pathways and intracellular mechanisms, such as production of viral restriction factors.8Yan N. Chen Z.J. Intrinsic antiviral immunity.Nat Immunol. 2012; 13: 214-222Crossref PubMed Scopus (218) Google Scholar, 9Bieniasz P.D. Intrinsic immunity: a front-line defense against viral attack.Nat Immunol. 2004; 5: 1109-1115Crossref PubMed Scopus (310) Google Scholar The study of inborn errors of immunity was long dominated by the concept of "conventional" primary immunodeficiencies (PIDs), in which rare Mendelian traits confer susceptibility to infection with a multitude of pathogens in a completely penetrant manner and with a measurable effect on immune cell number or function. The prototype of such PIDs is X-linked (XL) agammaglobulinemia, which is caused by deleterious mutations in the Bruton tyrosine kinase gene (BTK). Bruton tyrosine kinase is expressed in hematopoietic cells, and defects of this protein render the host susceptible for life to recurrent life-threatening infections with various microbes and result in a detectable immunologic phenotype (little or absent immunoglobulin production and few or absent B lymphocytes). In the 1910s, Nicolle described asymptomatic infections and documented the natural variability in host susceptibility to infection. In line with these observations, "monogenic infections" were described from the 1940s onward, and their molecular basis was described from the 1970s onward. Increased and selective susceptibility to infections with one or a narrow range of pathogens can be referred to as "nonconventional" PIDs and include many inborn errors of innate immunity.10Casanova J.L. Human genetic basis of interindividual variability in the course of infection.Proc Natl Acad Sci U S A. 2015; 112: E7118-E7127Crossref PubMed Scopus (0) Google Scholar An example is the susceptibility to invasive Neisseria species infections in patients with late complement pathway defects.11Lim D. Gewurz A. Lint T.F. Ghaze M. Sepheri B. Gewurz H. Absence of the sixth component of complement in a patient with repeated episodes of meningococcal meningitis.J Pediatr. 1976; 89: 42-47Abstract Full Text PDF PubMed Scopus (0) Google Scholar, 12Petersen B.H. Graham J.A. Brooks G.F. Human deficiency of the eighth component of complement. The requirement of C8 for serum Neisseria gonorrhoeae bactericidal activity.J Clin Invest. 1976; 57: 283-290Crossref PubMed Google Scholar, 13Casanova J. Severe infectious diseases of childhood as monogenic inborn errors of immunity.Proc Natl Acad Sci U S A. 2015; 112: E7128-E7137Crossref PubMed Scopus (60) Google Scholar Over the last 2 decades, susceptibility to a narrow range of microbes, such as monogenic susceptibility to invasive pneumococcal disease (IPD), Mendelian susceptibility to mycobacterial disease (MSMD), herpes simplex virus 1 (HSV-1) encephalitis (HSE), and fungal disease, particularly chronic mucocutaneous candidiasis (CMC), have been ascribed to defects in single genes, often but not always encoding components of innate immunity.13Casanova J. Severe infectious diseases of childhood as monogenic inborn errors of immunity.Proc Natl Acad Sci U S A. 2015; 112: E7128-E7137Crossref PubMed Scopus (60) Google Scholar, 14Fischer A. Rausell A. Primary immunodeficiencies suggest redundancy within the human immune system.Sci Immunol. 2016; 1Crossref PubMed Google Scholar However, dichotomous classifications making distinctions between adaptive and innate immunity, not to mention cell-intrinsic immunity, represent an oversimplification and prove difficult to apply to inborn errors of immunity. In fact, inborn errors of innate immunity can result in the absence or impaired production of cytokines essential for the development, survival, proliferation, or function of B or T cells and can lead to allergy and autoimmunity, indications of adaptive immune dysregulation. In this review we explore a set of inborn errors affecting "primarily" innate immunity, acknowledging their effect on the adaptive immune response. We focus on recently described gene defects in the cellular compartment of the innate immune response or on new insights into the pathogenesis of previously described defects (Table I).15Della Mina E. Borghesi A. Zhou H. Bougarn S. Boughorbel S. Israel L. et al.Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts.Proc Natl Acad Sci U S A. 2017; 114: E514-E523Crossref PubMed Scopus (2) Google Scholar, 16Israel L. Wang Y. Bulek K. Della Mina E. Zhang Z. Pedergnana V. et al.Human adaptive immunity rescues an inborn error of innate immunity.Cell. 2017; 168: 789-800Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 17Glocker E. Hennigs A. Nabavi M. Schäffer A.A. Woellner C. Salzer U. et al.A homozygous CARD9 mutation in a family with susceptibility to fungal infections.N Engl J Med. 2009; 361: 1727-1735Crossref PubMed Scopus (455) Google Scholar, 18Boisson B. Laplantine E. Prando C. Giliani S. Israelsson E. Xu Z. et al.Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.Nat Immunol. 2012; 13: 1178-1186Crossref PubMed Scopus (185) Google Scholar, 19Boisson B. Laplantine E. Dobbs K. Cobat A. Tarantino N. Hazen M. et al.Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia.J Exp Med. 2015; 212: 939-951Crossref PubMed Scopus (64) Google Scholar, 20Vilboux T. Lev A. Malicdan M.C. Simon A.J. Jarvinen P. Racek T. et al.A congenital neutrophil defect syndrome associated with mutations in VPS45.N Engl J Med. 2013; 369: 54-65Crossref PubMed Scopus (50) Google Scholar, 21Stepensky P. Saada A. Cowan M. Tabib A. Fischer U. Berkun Y. et al.The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy.Blood. 2013; 121: 5078-5087Crossref PubMed Scopus (0) Google Scholar, 22Boztug K. Jarvinen P.M. Salzer E. Racek T. Monch S. Garncarz W. et al.JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia.Nat Genet. 2014; 46: 1021-1027Crossref PubMed Scopus (43) Google Scholar, 23Triot A. Jarvinen P.M. Arostegui J.I. Murugan D. Kohistani N. Dapena Diaz J.L. et al.Inherited biallelic CSF3R mutations in severe congenital neutropenia.Blood. 2014; 123: 3811-3817Crossref PubMed Scopus (26) Google Scholar, 24Witzel M. Petersheim D. Fan Y. Bahrami E. Racek T. Rohlfs M. et al.Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes.Nat Genet. 2017; 49: 742-752Crossref PubMed Scopus (8) Google Scholar, 25Kuhns D. Fink D.L. Choi U. Sweeney C. Lau K. Priel D.L. et al.Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency.Blood. 2016; 128: 2135-2143Crossref PubMed Scopus (12) Google Scholar, 26Bolze A. Mahlaoui N. Byun M. Turner B. Trede N. Ellis S.R. et al.Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia.Science. 2013; 340: 976-978Crossref PubMed Scopus (91) Google Scholar, 27Minegishi Y. Saito M. Morio T. Watanabe K. Agematsu K. Tsuchiya S. et al.Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity.Immunity. 2006; 25: 745-755Abstract Full Text Full Text PDF PubMed Scopus (367) Google Scholar, 28Kilic S.S. Hacimustafaoglu M. Boisson-Dupuis S. Kreins A.Y. Grant A.V. Abel L. et al.A patient with tyrosine kinase 2 deficiency without hyper-IgE syndrome.J Pediatr. 2012; 160: 1055-1057Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 29Kreins A. Ciancanelli M.J. Okada S. Kong X.F. Ramírez-Alejo N. Kilic S.S. et al.Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome.J Exp Med. 2015; 212: 1641-1662Crossref PubMed Google Scholar, 30Eletto D. Burns S.O. Angulo I. Plagnol V. Gilmour K.C. Henriquez F. et al.Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection.Nat Commun. 2016; 7: 13992Crossref PubMed Scopus (10) Google Scholar, 31Bogunovic D. Byun M. Durfee L.A. Abhyankar A. Sanal O. Mansouri D. et al.Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency.Science. 2012; 337: 1684-1688Crossref PubMed Scopus (217) Google Scholar, 32Meuwissen M. Schot R. Buta S. Oudesluijs G. Tinschert S. Speer S.D. et al.Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome.J Exp Med. 2016; 213: 1163-1174Crossref PubMed Scopus (52) Google Scholar, 33Hambleton S. Salem S. Bustamante J. Bigley V. Boisson-Dupuis S. Azevedo J. et al.IRF8 mutations and human dendritic-cell immunodeficiency.N Engl J Med. 2011; 365: 127-138Crossref PubMed Scopus (324) Google Scholar, 34Mace E. Bigley V. Gunesch J.T. Chinn I.K. Angelo L.S. Care M.A. et al.Biallelic mutations in IRF8 impair human NK cell maturation and function.J Clin Invest. 2017; 127: 306-320Crossref PubMed Google Scholar, 35Guerin A. Kerner G. Marr N. Markle J.G. Fenollar F. Wong N. et al.IRF4 haploinsufficiency in a family with Whipple's disease.Elife. 2018; 7Crossref PubMed Google Scholar, 36Schwerd T. Twigg S.R.F. Aschenbrenner D. Manrique S. Miller K.A. Taylor I.B. et al.A biallelic mutation in IL6ST encoding the GP130 co-receptor causes immunodeficiency and craniosynostosis.J Exp Med. 2017; 214: 2547-2562Crossref PubMed Scopus (3) Google Scholar, 37Van de Veerdonk F. Plantinga T.S. Hoischen A. Smeekens S.P. Joosten L.A. Gilissen C. et al.STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis.N Engl J Med. 2011; 365: 54-61Crossref PubMed Scopus (339) Google Scholar, 38Liu L. Okada S. Kong X.F. Kreins A.Y. Cypowyj S. Abhyankar A. et al.Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis.J Exp Med. 2011; 208: 1635-1648Crossref PubMed Scopus (388) Google Scholar, 39Okada S. Markle J.G. Deenick E.K. Mele F. Averbuch D. Lagos M. et al.Immunodeficiencies. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations.Science. 2015; 349: 606-613Crossref PubMed Scopus (130) Google Scholar, 40Starokadomskyy P. Gemelli T. Rios J.J. Xing C. Wang R.C. Li H. et al.DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis.Nat Immunol. 2016; 17: 495-504Crossref PubMed Scopus (0) Google Scholar, 44Lamborn I. Jing H. Zhang Y. Drutman S.B. Abbott J.K. Munir S. et al.Recurrent rhinovirus infections in a child with inherited MDA5 deficiency.J Exp Med. 2017; 214: 1949-1972Crossref PubMed Scopus (9) Google Scholar, 45Asgari S. Schlapbach L.J. Anchisi S. Hammer C. Bartha I. Junier T. et al.Severe viral respiratory infections in children with IFIH1 loss-of-function mutations.Proc Natl Acad Sci U S A. 2017; 114: 8342-8347Crossref PubMed Scopus (1) Google Scholar, 47Ogunjimi B. Zhang S.Y. Sorensen K.B. Skipper K.A. Carter-Timofte M. Kerner G. et al.Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections.J Clin Invest. 2017; 127: 3543-3556Crossref PubMed Scopus (8) Google Scholar, 46Zaki M. Thoenes M. Kawalia A. Nurnberg P. Kaiser R. Heller R. et al.Recurrent and prolonged infections in a child with a homozygous IFIH1 nonsense mutation.Front Genet. 2017; 8: 130Crossref PubMed Scopus (0) Google Scholar, 48Narumi S. Amano N. Ishii T. Katsumata N. Muroya K. Adachi M. et al.SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7.Nat Genet. 2016; 48: 792-797Crossref PubMed Scopus (50) Google Scholar, 49Chen D.H. Below J.E. Shimamura A. Keel S.B. Matsushita M. Wolff J. et al.Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L.Am J Hum Genet. 2016; 98: 1146-1158Abstract Full Text Full Text PDF PubMed Scopus (28) Google Scholar, 50Ciancanelli M. Huang S.X. Luthra P. Garner H. Itan Y. Volpi S. et al.Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency.Science. 2015; 348: 448-453Crossref PubMed Scopus (102) Google Scholar, 51Hambleton S. Goodbourn S. Young D.F. Dickinson P. Mohamad S.M. Valappil M. et al.STAT2 deficiency and susceptibility to viral illness in humans.Proc Natl Acad Sci U S A. 2013; 110: 3053-3058Crossref PubMed Scopus (59) Google Scholar, 52Duncan C. Mohamad S.M. Young D.F. Skelton A.J. Leahy T.R. Munday D.C. et al.Human IFNAR2 deficiency: lessons for antiviral immunity.Sci Transl Med. 2015; 7: 307ra154Crossref PubMed Scopus (23) Google Scholar, 53Hernandez N. Melki I. Jing H. Danielson J. Habib T. Huang S. et al.Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency.J Exp Med. 2018 Aug 24; (pii: jem.20180628)Crossref PubMed Google Scholar, 54Hoyos-Bachiloglu R. Chou J. Sodroski C.N. Beano A. Bainter W. Angelova M. et al.A digenic human immunodeficiency characterized by IFNAR1 and IFNGR2 mutations.J Clin Invest. 2017; 127: 4415-4420Crossref PubMed Scopus (2) Google Scholar, 55Gineau L. Cognet C. Kara N. Lach F.P. Dunne J. Veturi U. et al.Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency.J Clin Invest. 2012; 122: 821-832Crossref PubMed Scopus (117) Google Scholar, 56Hughes C. Guasti L. Meimaridou E. Chuang C.H. Schimenti J.C. King P.J. et al.MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans.J Clin Invest. 2012; 122: 814-820Crossref PubMed Scopus (109) Google Scholar, 57Casey J.P. Nobbs M. McGettigan P. Lynch S. Ennis S. Recessive mutations in MCM4/PRKDC cause a novel syndrome involving a primary immunodeficiency and a disorder of DNA repair.J Med Genet. 2012; 49: 242-245Crossref PubMed Scopus (19) Google Scholar, 58Cottineau J. Kottemann M.C. Lach F.P. Kang Y.H. Vély F. Deenick E.K. et al.Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency.J Clin Invest. 2017; 127: 1991-2006Crossref PubMed Scopus (7) Google Scholar, 59Dickinson R.E. Griffin H. Bigley V. Reynard L.N. Hussain R. Haniffa M. et al.Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency.Blood. 2011; 118: 2656-2658Crossref PubMed Scopus (218) Google Scholar, 60Hsu A.P. Sampaio E.P. Khan J. Calvo K.R. Lemieux J.E. Patel S.Y. et al.Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome.Blood. 2011; 118: 2653-2655Crossref PubMed Scopus (300) Google Scholar, 61Ostergaard P. Simpson M.A. Connell F.C. Steward C.G. Brice G. Woollard W.J. et al.Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome).Nat Genet. 2011; 43: 929-931Crossref PubMed Scopus (229) Google Scholar, 62Hahn C.N. Chong C.E. Carmichael C.L. Wilkins E.J. Brautigan P.J. Li X.C. et al.Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia.Nat Genet. 2011; 43: 1012-1017Crossref PubMed Scopus (278) Google Scholar Therefore, although key to innate immunity against infections, the complement system (comprehensively reviewed elsewhere63Freeley S. Kemper C. Le Friec G. The "ins and outs" of complement-driven immune responses.Immunol Rev. 2016; 274: 16-32Crossref PubMed Scopus (0) Google Scholar, 64Liszewski M.K. Java A. Schramm E.C. Atkinson J.P. Complement dysregulation and disease: insights from contemporary genetics.Annu Rev Pathol. 2017; 12: 25-52Crossref PubMed Scopus (13) Google Scholar) will not be discussed here. For the recently described CD55 deficiency, we refer to the original publication.65Ozen A. Comrie W.A. Ardy R.C. Dominguez Conde C. Dalgic B. Beser O.F. et al.CD55 deficiency, early-onset protein-losing enteropathy, and thrombosis.N Engl J Med. 2017; 377: 52-61Crossref PubMed Scopus (23) Google ScholarTable IOverview of recently described inborn errors of innate immunity to infectionProteinGeneOMIM no. gene/diseaseInheritance and penetranceCells, where expressed (mRNA and/or protein)Cells, where testedResultsImmunologic phenotypeInfectious phenotypeNoninfectious phenotypeAutoinflammationNo. of reported patientsTherapyYear of genetic reportUpstream defects of the TLR and/or IL-1R signaling pathway IRAK1IRAK1300283XLUbiquitousFibroblasts, PBMCs, EBV-B cellsTLR responses: impaired in fibroblasts and EBV-B cells, normal in PBMCsNormal responses to IL-1β in fibroblasts and PBMCsNANANA (MECP2 deletion sdr)No1NA201715Della Mina E. Borghesi A. Zhou H. Bougarn S. Boughorbel S. Israel L. et al.Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts.Proc Natl Acad Sci U S A. 2017; 114: E514-E523Crossref PubMed Scopus (2) Google Scholar TIRAPTIRAP606252AR-IPUbiquitousFibroblasts, PBMCs, granulocytesImpaired responses to TLR2 and TLR4 stimulationNASevere staphylococcal infectionNANo8NA201716Israel L. Wang Y. Bulek K. Della Mina E. Zhang Z. Pedergnana V. et al.Human adaptive immunity rescues an inborn error of innate immunity.Cell. 2017; 168: 789-800Abstract Full Text Full Text PDF PubMed Scopus (0) Google ScholarInborn errors of the CBM complex CARD9CARD9607212/212050AR-CPGranulocytesPBMCs, monocyte-derived DCs, macrophagesImpaired T cell−dependent IL-17 production Defective cytokine and chemokine production on fungal stimulationImpaired neutrophil killing, impaired neutrophil recruitment to the site of infectionEosinophilia, high IgE levelSuperficial (eg, CMC) and invasive (eg, meningoencephalitis) fungal infectionsNANo58HSCTGM-CSFG-CSF200917Glocker E. Hennigs A. Nabavi M. Schäffer A.A. Woellner C. Salzer U. et al.A homozygous CARD9 mutation in a family with susceptibility to fungal infections.N Engl J Med. 2009; 361: 1727-1735Crossref PubMed Scopus (455) Google ScholarInborn errors of LUBAC HOIL-1HOIL1 (RBCK1)610924AR-CPUbiquitousFibroblasts, EBV-B cells, PBMCsImpaired NF-κB responses in fibroblasts and EBV-B cellsEnhanced response to IL-1β in monocytesImpaired vaccine responsesInvasive bacterial infectionsChronic autoinflammation, muscular amylopectinosisYes3NA201218Boisson B. Laplantine E. Prando C. Giliani S. Israelsson E. Xu Z. et al.Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.Nat Immunol. 2012; 13: 1178-1186Crossref PubMed Scopus (185) Google Scholar HOIPHOIP (RNF31)612487AR-CPUbiquitousFibroblasts,EBV-B cells,PBMCsImpaired linear ubiquitination and NF-κB activation in fibroblasts Impaired CD40 activation in B cells. Enhanced response to IL-1β in monocytes.Lymphopenia, antibody deficiency and impaired distribution and function of T lymphocytesRecurrent viral and bacterial infectionsMultiorgan autoinflammation, chronic diarrhea, subclinical amylopectinosis, systemic lymphangiectasiaYes1NA201519Boisson B. Laplantine E. Dobbs K. Cobat A. Tarantino N. Hazen M. et al.Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia.J Exp Med. 2015; 212: 939-951Crossref PubMed Scopus (64) Google ScholarDefects of phagocytes VPS45 (SCN5)VPS45610035/615285AR-CPBroadly expressedLymphoblasts, fibroblasts, platelets, neutrophils, bone marrow myeloid cellsImpaired cell migration, increased apoptosis, loss of lysosomesLoss of α-granules in plateletsSCN, G-CSF treatment resistantPlatelet dysfunction, thrombocytopenia, progressive anemiaInvasive pyogenic bacterial and fungal infections of airways, skin, and urinary tract; sepsisExtramedullar hematopoiesis, bone marrow fibrosis, nephromegaly, hepatosplenomegaly, neurological involvementNo13HSCT201320Vilboux T. Lev A. Malicdan M.C. Simon A.J. Jarvinen P. Racek T. et al.A congenital neutrophil defect syndrome associated with mutations in VPS45.N Engl J Med. 2013; 369: 54-65Crossref PubMed Scopus (50) Google Scholar, 21Stepensky P. Saada A. Cowan M. Tabib A. Fischer U. Berkun Y. et al.The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy.Blood. 2013; 121: 5078-5087Crossref PubMed Scopus (0) Google Scholar JAGN1 (SCN6)JAGN1616012/616022AR-CPUbiquitousNeutrophilsUltrastructural defects, few granules, aberrant glycosylation of G-CSF receptor, increased apoptosisSCN, mostly G-CSF treatment resistantPyogenic bacterial infections of airways and skin; sepsisMyeloid maturation arrest, osteopenia, teeth abnormalities, facial dysmorphisms, short stature, pancreatic insufficiencyNo16G-CSFHSCT201422Boztug K. Jarvinen P.M. Salzer E. Racek T. Monch S. Garncarz W. et al.JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia.Nat Genet. 2014; 46: 1021-1027Crossref PubMed Scopus (43) Google Scholar G-CSF receptor (SCN7)CSF3R138971/617014AR-CPGranulocytes, placenta, and other tissuesPBMCsImpaired glycosylation, expression at the cell surface, and functionSCN, G-CSF treatment resistantPyogenic bacterial infections of airways, skin, and urinary tractNANo5GM-CSF201423Triot A. Jarvinen P.M. Arostegui J.I. Murugan D. Kohistani N. Dapena Diaz J.L. et al.Inherited biallelic CSF3R mutations in severe congenital neutropenia.Blood. 2014; 123: 3811-3817Crossref PubMed Scopus (26) Google Scholar SMARCD2 (SGD2)SMARCD2601736/617475AR-CPHematopoietic progenitor cellsHematopoietic progenitor cellsMyeloid differentiation defects, defect of granulopoiesis, and neutrophil granule scarcityNeutropenia, neutrophil-specific granule deficiency, granulocyte maturation arrestSevere recurrent bacterial infections, sepsis, and parasitic infectionsDevelopmental delay, skeletal anomalies, dysmorphic features, delayed separation of umbilical cord, progressive myelofibrosis and MDS, chronic diarrheaNo4HSCT201724Witzel M. Petersheim D. Fan Y. Bahrami E. Racek T. Rohlfs M. et al.Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes.Nat Genet. 2017; 49: 742-752Crossref PubMed Scopus (8) Google Scholar Aip1WDR1604734AR-CPUbiquitousNeutrophilsImpaired neutrophil polarization, chemotaxis, and survival caused by impaired actin rearrangementMild neutropenia, herniation of neutrophil nuclear lobes, absence of neutrophil granulesPyogenic bacterial infections of airways, skin, and urinary tract; sepsis; disseminated lethal VZV infectionImpaired wound healing, severe stomatitis with oral stenosisYes6HSCT201625Kuhns D. Fink D.L. Choi U. Sweeney C. Lau K. Priel D.L. et al.Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency.Blood. 2016; 128: 2135-2143Crossref PubMed Scopus (12) Google ScholarDefect in a lymphoid organ: ICA RPSARPSA150370/271400AD-IPUbiquitousPBMCsHaploinsufficiencyAspleniaInvasive bacterial infectionsICANo>30NA, penicillin prophylaxis201326Bolze A. Mahlaoui N. Byun M. Turner B. Trede N. Ellis S.R. et al.Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia.Science. 2013; 340: 976-978Crossref PubMed Scopus (91) Google ScholarInborn errors of IFN-γ and IL-12 immunity TYK2TYK2176941/611521AR-CPBroadly expressedEBV-B cells, SV-40 fibroblasts, HVS T cells, PBMCs, fibroblastsImpaired responses to type I interferon, IL-12/IL-23, and IL-10NAMSMD and infections with other intracellular organisms and virusesHIES reported in only 1 patientNo8NA200627Minegishi Y. Saito M. Morio T. Watanabe K. Agematsu K. Tsuchiya S. et al.Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity.Immunity. 2006; 25: 745-755Abstract Full Text Full Text PDF PubMed Scopus (367) Google Scholar201228Kilic S.S. Hacimustafaoglu M. Boisson-Dupuis S. Kreins A.Y. Grant A.V. Abel L. et al.A patient with tyrosine kinase 2 deficiency without hyper-IgE syndrome.J Pediatr. 2012; 160: 1055-1057Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar201529Kreins A. Ciancanelli M.J. Okada S. Kong X.F. Ramírez-Alejo N. Kilic S.S. et al.Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome.J Exp Med. 2015; 212: 1641-1662Crossref PubMed Google Scholar JAK1JAK1147795AR-CPBroadly expressedPBMCs, fibroblastsImpaired responses to type I and II interferons, IL-2, IL-4, IL-10, IL-27Progressive T lymphopenia, increased IgG and IgA levelsMSMD, warts, superficial parasitic and fungal infectionsEarly-onset bladder carcinomaNo1NA201630Eletto D. Burns S.O. Angulo I. Plagnol V. Gilmour K.C. Henriquez F. et al.Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection.Nat Commun. 2016; 7: 13992Crossref PubMed Scopus (10) Google Scholar ISG15ISG15147571/616126AR-CPBroadly expressedPBMCs, granulocytes, SV-40 fibroblasts, EBV-B cellsEnhanced type I interferon responseImpaired IFN-γ production by NK and T cellsNAMSMDIntracranial calcificationsYes6NA201231Bogunovic D. Byun M. Durfee L.A. Abhyankar A. Sanal O. Mansouri D. et al.Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency.Science. 2012; 337: 1684-1688Crossref PubMed

Referência(s)