Artigo Revisado por pares

Review of High-Temperature Thermal Insulation Materials

2018; American Institute of Aeronautics and Astronautics; Volume: 33; Issue: 1 Linguagem: Inglês

10.2514/1.t5420

ISSN

1533-6808

Autores

Maria Tychanicz-Kwiecień, Joanna Wilk, Paweł Gil,

Tópico(s)

Building energy efficiency and sustainability

Resumo

No AccessSurvey PapersReview of High-Temperature Thermal Insulation MaterialsMaria Tychanicz-Kwiecień, Joanna Wilk and Paweł GilMaria Tychanicz-KwiecieńThe Faculty of Mechanical Engineering and Aeronautics, Ignacy Łukasiewicz Rzeszów University of Technology, 35-959 Rzeszów, Poland, Joanna WilkThe Faculty of Mechanical Engineering and Aeronautics, Ignacy Łukasiewicz Rzeszów University of Technology, 35-959 Rzeszów, Poland and Paweł GilThe Faculty of Mechanical Engineering and Aeronautics, Ignacy Łukasiewicz Rzeszów University of Technology, 35-959 Rzeszów, PolandPublished Online:19 Aug 2018https://doi.org/10.2514/1.T5420SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Furmański P., Wiśniewski T. S. and Banaszek J., "Izolacje Cieplne. Mechanizmy Wymiany Ciepła, Właściwości Cieplne i ich Pomiary," 1st ed., Inst. Techniki Cieplnej, Warsaw Univ. of Technology, Warsaw, 2006 (in Polish). Google Scholar[2] Górzyński J., Przemysłowe Izolacje Cieplne, Sorus, Poznań, Poland, 1996 (in Polish). Google Scholar[3] Cammerer J. S., Izolacje Ciepłochronne w Przemyśle, Arkady, Warsaw, 1967 (in Polish). Google Scholar[4] Diamant R. M. E., "Thermal Insulation for Industry," Thermal and Acoustic Insulation, Butterworths, London, 1986, pp. 231–273, Chap. 7. CrossrefGoogle Scholar[5] Petrov V. A., "Combined Radiation and Conduction Heat Transfer in High Temperature Fiber Thermal Insulation," International Journal of Heat and Mass Transfer, Vol. 40, No. 9, 1997, pp. 2241–2247. doi:https://doi.org/10.1016/S0017-9310(96)00242-6 IJHMAK 0017-9310 CrossrefGoogle Scholar[6] Daryabeigi K., "Heat Transfer in High Temperature Fibrous Insulation," 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper 2002-3332, June 2002. doi:https://doi.org/10.2514/6.2002-3332 LinkGoogle Scholar[7] He Y.-L. and Xie T., "Advances of Thermal Conductivity Models of Nanoscale Silica Aerogel Insulation Material," Applied Thermal Engineering, Vol. 81, April 2015, pp. 28–50. doi:https://doi.org/10.1016/j.applthermaleng.2015.02.013 ATENFT 1359-4311 CrossrefGoogle Scholar[8] Zhao J.-J., Duan Y.-Y., Wang X.-D. and Wang B.-X., "An Analytical Model for Combined Radiative and Conductive Heat Transfer in Fiber-Loaded Silica Aerogels," Journal of Non-Crystalline Solids, Vol. 358, May 2012, pp. 1303–1312. doi:https://doi.org/10.1016/j.jnoncrysol.2012.02.037 JNCSBJ 0022-3093 CrossrefGoogle Scholar[9] Sawicki J., "Materiały Termoizolacyjne Przeznaczone do Wysokich Temperatur," IZOLACJE, tom R.14, nr 6/2009, 2012, pp. 50–55 (in Polish). Google Scholar[10] Jelle B. P., "Traditional, State-of-the-Art and Future Thermal Building Insulation Materials and Solutions—Properties, Requirements and Possibilities," Energy and Buildings, Vol. 43, No. 10, 2011, pp. 2549–2563. doi:https://doi.org/10.1016/j.enbuild.2011.05.015 ENEBDR 0378-7788 CrossrefGoogle Scholar[11] Baetens R., High Performance Thermal Insulation Materials for Buildings (Chapter 9), Fibrous and Composite Materials for Civil Engineering Applications, Woodhead Publ., Cambridge, England, U.K., 2013. doi:https://doi.org/10.1533/9780857098832.2.188 Google Scholar[12] Lu X. and Viljanen M., Fibrous Insulation Materials in Building Engineering Applications (Chapter 10), Fibrous and Composite Materials for Civil Engineering Applications, Woodhead Publ., Cambridge, England, U.K., 2011. doi:https://doi.org/10.1533/9780857095583.3.271 Google Scholar[13] Daryabeigi K., "Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles," 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 1999-1044, Jan. 1999. doi:https://doi.org/10.2514/6.1999-1044 LinkGoogle Scholar[14] Koval'chyuk N. M., Listovnichaya S. P. and Pilipovskii Y. L., "Heat Insulating Materials Based on the Fibers of Refractory Oxides: A Review," Refractories and Industrial Ceramics, Vol. 32, No. 11, Nov. 1991, pp. 621–624. doi:https://doi.org/10.1007/BF01280860 Google Scholar[15] Martynenko V. V. and Dergaputskaya L. A., "Effective Heat- Insulating Lightweight and Fibrous Refractories," Refractories and Industrial Ceramics, Vol. 34, Nos. 5–6, 1993, pp. 330–332. doi:https://doi.org/10.1007/BF01293240 Google Scholar[16] Savchenkova S. F., Fokin G. A., Kondrashov V. A. and Filippov G. A., "Thermophysical Properties of Heat- Insulating Materials," Refractories and Industrial Ceramics, Vol. 40, No. 3, March 1999, pp. 110–112. doi:https://doi.org/10.1007/BF02762361 CrossrefGoogle Scholar[17] Zhang B. M., Zhao S. Y. and He X. D., "Experimental and Theoretical Studies on High Temperature Thermal Properties of Fibrous Insulation," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 109, No. 7, 2008, pp. 1309–1324. doi:https://doi.org/10.1016/j.jqsrt.2007.10.008 CrossrefGoogle Scholar[18] Zhao S. Y., Zhang B. M. and He X. D., "Temperature and Pressure Dependent Effective Thermal Conductivity of Fibrous Insulation," International Journal of Thermal Sciences, Vol. 48, No. 2, 2009, pp. 440–448. doi:https://doi.org/10.1016/j.ijthermalsci.2008.05.003 CrossrefGoogle Scholar[19] Zhang B. M., Xie W. H., Du S. Y. and Zhao S. Y., "An Experimental Study of Effective Thermal Conductivity of High Temperature Insulations," Journal of Heat Transfer, Vol. 130, March 2008, Paper 034504. doi:https://doi.org/10.1115/1.2804946 JHTRAO 0022-1481 CrossrefGoogle Scholar[20] Zuev A. V. and Prosuntov P. V., "Model of the Structure of Fibrous Heat-Insulating Materials for Analyzing Combined Heat Transfer Processes," Journal of Engineering Physics and Thermophysics, Vol. 87, No. 6, Nov. 2014, pp. 1374–1385. doi:https://doi.org/10.1007/s10891-014-1140-z JEPTER 1062-0125 CrossrefGoogle Scholar[21] Arambakam R., Tafreshi H. and Pourdeyhimi B., "Modeling Performance of Multi-Component Fibrous Insulations Against Conductive and Radiative Heat Transfer," International Journal of Heat and Mass Transfer, Vol. 71, April 2014, pp. 341–348. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.031 IJHMAK 0017-9310 CrossrefGoogle Scholar[22] "The Sol-Gel Process," Aerogel.org [online database], http://www.aerogel.org/?p=992 [retrieved 12 July 2017]. Google Scholar[23] Bi C. and Tang G. H., "Effective Thermal Conductivity of the Solid Backbone of Aerogel," International Journal of Heat and Mass Transfer, Vol. 64, Sept. 2013, pp. 452–456. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.053 IJHMAK 0017-9310 CrossrefGoogle Scholar[24] Bi C., Tang G. H. and Hu Z. J., "Heat Conduction Modeling in 3-D Ordered Structures for Prediction of Aerogel Thermal Conductivity," International Journal of Heat and Mass Transfer, Vol. 73, June 2014, pp. 103–109. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.058 IJHMAK 0017-9310 CrossrefGoogle Scholar[25] Baetens R., Jelle B. P. and Gustavsen A., "Aerogel Insulation for Building Applications: A State-of-the-Art Review," Energy and Buildings, Vol. 43, No. 4, 2011, pp. 761–769. doi:https://doi.org/10.1016/j.enbuild.2010.12.012 ENEBDR 0378-7788 CrossrefGoogle Scholar[26] Yu C. H., Fu Q. J. and Tsang S. C. E., Aerogel Materials for Insulation in Buildings (Chapter 13), Materials for Energy Efficiency and Thermal Comfort in Buildings, Woodhead Publ., Cambridge, England, U.K., Dec. 2010, pp. 319–344. CrossrefGoogle Scholar[27] "What Is Aerogel?" Aerogel.org [online database], http://www.aerogel.org/?p=3 [retrieved 12 July 2017]. Google Scholar[28] Hostler S. R., Abramson A. R., Gawryla A. D., Bandi S. A. and Schiraldi D. A., "Thermal Conductivity of a Clay-Based Aerogel," International Journal of Heat and Mass Transfer, Vol. 52, Nos. 3–4, 2009, pp. 665–669. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.002 IJHMAK 0017-9310 CrossrefGoogle Scholar[29] Laskowski J., Millow B. and Ratke L., "Aerogel-Aerogel Composites for Normal Temperature Range Thermal Insulations," Journal of Non-Crystalline Solids, Vol. 441, June 2016, pp. 42–48. doi:https://doi.org/10.1016/j.jnoncrysol.2016.03.020 JNCSBJ 0022-3093 CrossrefGoogle Scholar[30] Yuan B., Ding S., Wang D., Wang G. and Li H., "Heat Insulation Properties of Silica Aerogel/Glass Fiber Composites Fabricated by Press Forming," Materials Letters, Vol. 75, May 2012, pp. 204–206. doi:https://doi.org/10.1016/j.matlet.2012.01.114 MLETDJ 0167-577X CrossrefGoogle Scholar[31] Wei G., Liu Y., Zhang X., Yu F. and Du X., "Thermal Conductivities Study on Silica Aerogel and Its Composite Insulation Materials," International Journal of Heat and Mass Transfer, Vol. 54, Nos. 11–12, 2011, pp. 2355–2366. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.026 IJHMAK 0017-9310 CrossrefGoogle Scholar[32] Fang W.-Z., Zhang H., Chen L. and Tao W.-Q., "Numerical Predictions of Thermal Conductivities for the Silica Aerogel and Its Composites," Applied Thermal Engineering, Vol. 115, March 2017, pp. 1277–1286. doi:https://doi.org/10.1016/j.applthermaleng.2016.10.184 ATENFT 1359-4311 CrossrefGoogle Scholar[33] He J., Li X., Su D., Ji H. and Wang X., "Ultra-Low Thermal Conductivity and High Strength of Aerogel/Fibrous Ceramic Composites," Journal of the European Ceramic Society, Vol. 36, No. 6, 2016, pp. 1487–1493. doi:https://doi.org/10.1016/j.jeurceramsoc.2015.11.021 JECSER 0955-2219 CrossrefGoogle Scholar[34] Berge A. and Johansson P., "Literature Review of High Performance Thermal Insulation: Report in Building Physics," Rept. 2012:2, Dept. of Civil and Environmental Engineering, Chalmers Univ. of Technology, Gothenburg, Sweden, 2012. Google Scholar[35] Cohen E. and Glicksman L., "Thermal Properties of Silica Aerogel Formula," Journal of Heat Transfer, Vol. 137, Aug. 2015, Paper 081601. doi:https://doi.org/10.1115/1.4028901 JHTRAO 0022-1481 CrossrefGoogle Scholar[36] Hoseini A., McCague C., Andisheh-Tadbir M. and Bahrami M., "Aerogel Blankets: From Mathematical Modeling to Material Characterization and Experimental Analysis," International Journal of Heat and Mass Transfer, Vol. 93, Feb. 2016, pp. 1124–1131. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.030 IJHMAK 0017-9310 CrossrefGoogle Scholar[37] Kim J. and Song T.-H., "Vacuum Insulation Properties of Glass Wool and Opacified Fumed Silica Under Variable Pressing Load and Vacuum Level," International Journal of Heat and Mass Transfer, Vol. 64, Sept. 2013, pp. 783–791. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.012 IJHMAK 0017-9310 CrossrefGoogle Scholar[38] Baetens R., Jelle B. P., Thue J. V., Tenpierik M. J., Grynning S., Uvsløkk S. and Gustavsen A., "Vacuum Insulation Panels for Building Applications: A Review and Beyond," Energy and Buildings, Vol. 42, No. 2, 2010, pp. 147–172. doi:https://doi.org/10.1016/j.enbuild.2009.09.005 ENEBDR 0378-7788 CrossrefGoogle Scholar[39] Simmler H. and Brunner S., "Vacuum Insulation Panels for Building Application. Basic Properties, Aging Mechanisms and Service Life," Energy and Buildings, Vol. 37, No. 11, 2005, pp. 1122–1131. doi:https://doi.org/10.1016/j.enbuild.2005.06.015 ENEBDR 0378-7788 CrossrefGoogle Scholar[40] Wang Y., Chen Z., Yu S., Saeed M.-U. and Luo R., "Preparation and Characterization of a New-Type High-Temperature Vacuum Insulation Composites with Graphite Felt Core Material," Materials and Design, Vol. 99, June 2016, pp. 369–377. doi:https://doi.org/10.1016/j.matdes.2016.03.083 MADSD2 0264-1275 CrossrefGoogle Scholar[41] Spinnler M., Winter E. R. F. and Viskanta R., "Studies on High Temperature Multilayer Thermal Insulations," International Journal of Heat and Mass Transfer, Vol. 47, Nos. 6–7, 2004, pp. 1305–1312. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.012 IJHMAK 0017-9310 CrossrefGoogle Scholar[42] Spinnler M., Winter E. R. F., Viskanta R. and Sattelmayer T., "Theoretical Studies of High-Temperature Multilayer Thermal Insulations Using Radiation Scaling," International Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 84, No. 4, 2004, pp. 477–491. doi:https://doi.org/10.1016/S0022-4073(03)00264-4 CrossrefGoogle Scholar[43] Daryabeigi K., Miller S. D. and Cunnington G. R., "Heat Transfer in High Temperature Multilayer Insulation," Thermal Protection Systems and Hot Structures, Vol. 631, Aug. 2006, p. 43. Google Scholar[44] Hammerschmidt U., Hameury J., Strnad R., Turzó-Andras E. and Wu J., "Critical Review of Industrial Techniques for Thermal Conductivity Measurements of Thermal Insulation Materials," International Journal of Thermophysics, Vol. 36, No. 7, 2015, pp. 1530–1544. doi:https://doi.org/10.1007/s10765-015-1863-x IJTHDY 0195-928X CrossrefGoogle Scholar[45] Yüksel N., "The Review of Some Commonly Used Methods and Techniques to Measure the Thermal Conductivity of Insulation Materials," Insulation Materials in Context of Sustainability, IntechOpen, London, 2016, Chap. 6. doi:https://doi.org/10.5772/61361 CrossrefGoogle Scholar[46] Kobari T., Okajima J., Komiya A. and Maruyama S., "Development of Guarded Hot Plate Apparatus Utilizing Peltier Module for Precise Thermal Conductivity Measurements of Insulation Materials," International Journal of Heat and Mass Transfer, Vol. 91, Dec. 2015, pp. 1157–1166. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.044 IJHMAK 0017-9310 CrossrefGoogle Scholar[47] Rausch M. H., Krzeminski K., Leipertz A. and Fröba A. P., "A New Guarded Parallel-Plate Instrument for Measurement of the Thermal Conductivity of Fluids and Solids," International Journal of Heat and Mass Transfer, Vol. 58, Nos. 1–2, 2013, pp. 610–618. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.069 IJHMAK 0017-9310 CrossrefGoogle Scholar[48] Sanjaya C. S., Wee T.-H. and Tamilselvan T., "Regression Analysis Estimation of Thermal Conductivity Using Guarded-Hot-Plate Apparatus," Applied Thermal Engineering, Vol. 31, No. 10, 2011, pp. 1566–1575. doi:https://doi.org/10.1016/j.applthermaleng.2011.01.007 ATENFT 1359-4311 CrossrefGoogle Scholar[49] Ladevie B. and Fudym O., "A New Simple Device to Estimate Thermophysical Properties of Insulating Materials," International Communications in Heat and Mass Transfer, Vol. 27, No. 4, 2000, pp. 473–484. doi:https://doi.org/10.1016/S0735-1933(00)00130-5 IHMTDL 0735-1933 CrossrefGoogle Scholar[50] Jannot Y., Degiovanni A. and Payet G., "Thermal Conductivity Measurement of Insulating Materials with a Three Layers Device," International Journal of Heat and Mass Transfer, Vol. 52, Nos. 5–6, 2009, pp. 1105–1111. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.017 IJHMAK 0017-9310 CrossrefGoogle Scholar[51] dos Santos W. N., "Advances on the Hot Wire Technique," Journal of European Ceramic Society, Vol. 28, No. 1, 2008, pp. 15–20. doi:https://doi.org/10.1016/j.jeurceramsoc.2007.04.012 CrossrefGoogle Scholar[52] Franco A., "An Apparatus for the Routine Measurement of Thermal Conductivity of Materials for Building Application Based on a Transient Hot-Wire Method," Applied Thermal Engineering, Vol. 27, Nos. 14–15, Oct. 2007, pp. 2495–2504. doi:https://doi.org/10.1016/j.applthermaleng.2007.02.008 ATENFT 1359-4311 CrossrefGoogle Scholar[53] Coquard R., Coment E., Flasquin G. and Baillis D., "Analysis of the Hot-Disk Technique Applied to Low-Density Insulating Materials," International Journal of Thermal Sciences, Vol. 65, March 2013, pp. 242–253. doi:https://doi.org/10.1016/j.ijthermalsci.2012.10.008 CrossrefGoogle Scholar[54] Coquard R., Baills D. and Quenard D., "Experimental and Theoretical Study of the Hot-Wire Method Applied to Low-Density Thermal Insulators," International Journal of Heat and Mass Transfer, Vol. 49, Nos. 23–24, 2006, pp. 4511–4524. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.016 IJHMAK 0017-9310 CrossrefGoogle Scholar[55] Coquard R., Baills D. and Quenard D., "Experimental and Theoretical Study of the Hot-Ring Method Applied to Low-Density Thermal Insulators," International Journal of Heat and Mass Transfer, Vol. 47, March 2008, pp. 324–338. doi:https://doi.org/10.1016/j.ijthermalsci.2007.01.015 IJHMAK 0017-9310 Google Scholar[56] Sparrow E. M., Gorman J. M., Trawick A. and Abraham J. P., "Novel Techniques for Measurement of Thermal Conductivity of Both Highly and Lowly Conducting Solid Media," International Journal of Heat and Mass Transfer, Vol. 55, Nos. 15–16, 2012, pp. 4037–4042. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.043 IJHMAK 0017-9310 CrossrefGoogle Scholar[57] Monde M., Kosaka M. and Mitsutake Y., "Simple Measurement of Thermal Diffusivity and Thermal Conductivity Using Inverse Solution for One-Dimensional Heat Conduction," International Journal of Heat and Mass Transfer, Vol. 53, Nos. 23–24, 2010, pp. 5343–5349. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.022 IJHMAK 0017-9310 CrossrefGoogle Scholar[58] Pillai C. G. S. and George A. M., "An Improved Comparative Thermal Conductivity Apparatus for Measurements at High Temperatures," International Journal of Thermophysics, Vol. 12, No. 3, 1991, pp. 563–576. doi:https://doi.org/10.1007/BF00502369 IJTHDY 0195-928X CrossrefGoogle Scholar[59] Miller R. A. and Kuczmarski M. A., U.S. Patent Application 2012/0294329 A1 for "Method and Apparatus for Measuring Thermal Conductivity of Small, Highly Insulating Specimens," Nov. 2012. Google Scholar Previous article FiguresReferencesRelatedDetailsCited byBiomass-based porous composites with heat transfer characteristics: preparation, performance and evaluation - a review20 July 2022 | Journal of Porous Materials, Vol. 29, No. 6A review on heat transfer in nanoporous silica aerogel insulation materials and its modelingEnergy Storage and Saving, Vol. 1, No. 4Economic strategies for low-temperature transportation of asphalt pavement: a comparative analysis of temperature variations17 September 2022 | International Journal of Pavement Engineering, Vol. 44Performance of high-temperature lightweight multilayer insulationsApplied Thermal Engineering, Vol. 211Porous Refractory Ceramics for High-Temperature Thermal Insulation - Part 2: The Technology Behind Energy Saving19 April 2022 | Interceram - International Ceramic Review, Vol. 71, No. 1Climate-Adaptive Façades with an Air Chamber16 March 2022 | Buildings, Vol. 12, No. 3Thermal Conductivity Analysis of High Porosity Structures with Open and Closed PoresInternational Journal of Heat and Mass Transfer, Vol. 183An overview of factors influencing thermal conductivity of building insulation materialsJournal of Building Engineering, Vol. 44Porous Refractory Ceramics for High-Temperature Thermal Insulation - Part 1: The Science Behind Energy Saving3 September 2021 | Interceram - International Ceramic Review, Vol. 70, No. 3Quick Determination of Thermal Conductivity of Thermal Insulators Using a Modified Lee–Charlton's Disc Apparatus Technique25 May 2021 | International Journal of Thermophysics, Vol. 42, No. 8Reduction of structural hierarchy translates into variable influence on the performance of boron nitride aerogeliScience, Vol. 24, No. 3To decarbonize industry, we must decarbonize heatJoule, Vol. 5, No. 3Design and performance evaluation of a device for determination of specific heat capacity of thermal insulators1 September 2020 | Beni-Suef University Journal of Basic and Applied Sciences, Vol. 9, No. 1Actual questions of fire safety of materials internal structural elements for special vehicles19 July 2020 | Pozharovzryvobezopasnost/Fire and Explosion Safety, Vol. 29, No. 3The Emergent Behaviour of Thermal Networks and Its Impact on the Thermal Conductivity of Heterogeneous Materials and Systems23 March 2020 | Journal of Composites Science, Vol. 4, No. 1Micrograded ceramic-metal compositesJournal of the European Ceramic Society, Vol. 39, No. 12 What's Popular Volume 33, Number 1January 2019 CrossmarkInformationCopyright © 2018 by The Faculty of Mechanical Engineering and Aeronautics. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0887-8722 (print) or 1533-6808 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsConvectionHeat ConductionHeat TransferHeating SystemHeating, Ventilating, and Air ConditioningRadiative Heat TransferRadiative HeatingThermal Control and ProtectionThermal InsulationThermal RadiationThermodynamic PropertiesThermodynamicsThermophysical PropertiesThermophysics and Heat Transfer KeywordsFibrous InsulationConduction Heat TransferAlternative EnergyEnergy ConversionThermal Conductivity MeasurementThermal DiffusivityThermal PropertiesNumerical AnalysisGlass FiberRadiation Heat TransferPDF Received27 November 2017Accepted22 March 2018Published online19 August 2018

Referência(s)