Artigo Acesso aberto Revisado por pares

Families of Bounded Orbits near Binary Asteroid 65803 Didymos

2018; American Institute of Aeronautics and Astronautics; Volume: 42; Issue: 1 Linguagem: Inglês

10.2514/1.g003437

ISSN

1533-3884

Autores

Andrea Capannolo, Fabio Ferrari, Michèle Lavagna,

Tópico(s)

Stellar, planetary, and galactic studies

Resumo

No AccessEngineering NotesFamilies of Bounded Orbits near Binary Asteroid 65803 DidymosAndrea Capannolo, Fabio Ferrari and Michèle LavagnaAndrea CapannoloPolytechnic University of Milan, 20156 Milan, Italy, Fabio FerrariPolytechnic University of Milan, 20156 Milan, Italy and Michèle LavagnaPolytechnic University of Milan, 20156 Milan, ItalyPublished Online:20 Sep 2018https://doi.org/10.2514/1.G003437SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Scheeres D. J., "Dynamics About Uniformly Rotating Triaxial Ellipsoids: Applications to Asteroids," Icarus, Vol. 110, No. 2, 1994, pp. 225–238. doi:https://doi.org/10.1006/icar.1994.1118 ICRSA5 0019-1035 CrossrefGoogle Scholar[2] Werner R. A. and Scheeres D. J., "Exterior Gravitation of a Polyhedron Derived and Compared with Harmonic and Mascon Gravitation Representations of Asteroid 4769 Castalia," Celestial Mechanics and Dynamical Astronomy, Vol. 65, No. 3, 1997, pp. 313–344. doi:https://doi.org/10.1007/BF00053511 CrossrefGoogle Scholar[3] Scheeres D. J., Ostro S. J., Hudson R. S., DeJong E. M. and Suzuki S., "Dynamics of Orbits Close to Asteroid 4179 Toutatis," Icarus, Vol. 132, No. 1, 1998, pp. 53–79. doi:https://doi.org/10.1006/icar.1997.5870 ICRSA5 0019-1035 CrossrefGoogle Scholar[4] Muller P. M. and Sjogren W. L., "Mascons: Lunar Mass Concentrations," Science, Vol. 161, No. 3842, 1968, pp. 680–684. doi:https://doi.org/10.1126/science.161.3842.680 SCIEAS 0036-8075 CrossrefGoogle Scholar[5] Colagrossi A., Ferrari F., Lavagna M. and Howell K., "Dynamical Evolution About Asteroids with High Fidelity Gravity Field and Perturbations Modeling," Advances in the Astronautical Sciences (Proceedings of the AIAA/AAS Astrodynamics Specialist Conference), Vol. 156, edited by Wawrzyniak J., Turner G., Cerven W. and Majji M., Univelt, Napa, CA, 2016, pp. 885–903. Google Scholar[6] Ferrari F., Tasora A., Masarati P. and Lavagna M., "N-Body Gravitational and Contact Dynamics for Asteroid Aggregation," Multibody System Dynamics, Vol. 39, No. 1, 2017, pp. 3–20. doi:https://doi.org/10.1007/s11044-016-9547-2 CrossrefGoogle Scholar[7] Geissler P., Petit J., Durda D. D., Greenburg R., Bottke W., Nolan M. and Moore J., "Erosion and Ejecta Reaccretion on 243 Ida and Its Moon," Icarus, Vol. 120, No. 1, 1996, pp. 140–157. doi:https://doi.org/10.1006/icar.1996.0042 ICRSA5 0019-1035 CrossrefGoogle Scholar[8] Scheeres D. J., Williams B. G. and Miller J. K., "Evaluation of the Dynamic Environment of an Asteroid: Applications to 433 Eros," Journal of Guidance, Control, and Dynamics, Vol. 23, No. 3, 2000, pp. 466–475. doi:https://doi.org/10.2514/2.4552 JGCODS 0731-5090 LinkGoogle Scholar[9] Jiang Y., "Equilibrium Points and Periodic Orbits in the Vicinity of Asteroids with an Application to 216 Kleopatra," Earth, Moon, and Planets, Vol. 115, No. 1, 2015, pp. 31–44. doi:https://doi.org/10.1007/s11038-015-9464-z EMPLD3 0167-9295 CrossrefGoogle Scholar[10] Gabern F., Koon W. S. and Marsden J. E., "Parking a Spacecraft near an Asteroid Pair," Journal of Guidance, Control, and Dynamics, Vol. 29, No. 3, 2006, pp. 544–553. doi:https://doi.org/10.2514/1.15138 JGCODS 0731-5090 LinkGoogle Scholar[11] Bellerose J. and Scheeres D. J., "General Dynamics in the Restricted Full Three Body Problem," Acta Astronautica, Vol. 62, Nos. 10–11, 2008, pp. 563–576. doi:https://doi.org/10.1016/j.actaastro.2008.01.018 AASTCF 0094-5765 CrossrefGoogle Scholar[12] Bellerose J. and Scheeres D. J., "Restricted Full Three-Body Problem: Application to Binary System 1999 KW4," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 1, 2008, pp. 162–171. doi:https://doi.org/10.2514/1.30937 JGCODS 0731-5090 LinkGoogle Scholar[13] Chappaz L. and Howell K. C., "Exploration of Bounded Motion near Binary Systems Comprised of Small Irregular Bodies," Celestial Mechanics and Dynamical Astronomy, Vol. 123, No. 2, 2015, pp. 123–149. doi:https://doi.org/10.1007/s10569-015-9632-5 CrossrefGoogle Scholar[14] Pravec P., Scheirich P., Kušnirák P., Šarounová L., Mottola S., Hahn G., Brown P., Esquerdo G., Kaiser N., Krzeminski Z. and et al., "Photometric Survey of Binary Near-Earth Asteroids," Icarus, Vol. 181, No. 1, 2006, pp. 63–93. doi:https://doi.org/10.1016/j.icarus.2005.10.014 ICRSA5 0019-1035 CrossrefGoogle Scholar[15] Cheng A. F., Atchison J., Kantsiper B., Rivkin A. S., Stickle A., Reed C., Galvez A., Carnelli I., Michel P. and Ulamec S., "Asteroid Impact and Deflection Assessment Mission," Acta Astronautica, Vol. 115, Suppl. C, Oct.–Nov. 2015, pp. 262–269. doi:https://doi.org/10.1016/j.actaastro.2015.05.021 Google Scholar[16] Cheng A. F., Michel P., Jutzi M., Rivkin A. S., Stickle A., Barnouin O., Ernst C., Atchison P., Pravec P. and Richardson D. C., "Asteroid Impact and Deflection Assessment Mission: Kinetic Impactor," Planetary and Space Science, Vol. 121, Suppl. C, Feb. 2016, pp. 27–35. doi:https://doi.org/10.1016/j.pss.2015.12.004 PLSSAE 0032-0633 CrossrefGoogle Scholar[17] Michel P., Cheng A., Küppers M., Pravec P., Blum J., Delbo M., Green S. F., Rosenblatt P., Tsiganis K., Vincent J. B. and et al., "Science Case for the Asteroid Impact Mission (AIM): A Component of the Asteroid Impact and Deflection Assessment (AIDA) Mission," Advances in Space Research, Vol. 57, No. 12, 2016, pp. 2529–2547. doi:https://doi.org/10.1016/j.asr.2016.03.031 ASRSDW 0273-1177 CrossrefGoogle Scholar[18] Ferrari F. and Lavagna M., "Consolidated Phase a Design of Asteroid Impact Mission: MASCOT-2 Landing on Binary Asteroid Didymos," Advances in the Astronautical Sciences, Vol. 158, Feb. 2016, pp. 3759–3769. Google Scholar[19] Tardivel S., Lange C., Ulamec S. and Biele J., "The Deployment of Mascot-2 to Didymoon," Advances in the Astronautical Sciences, Vol. 158, Feb. 2016, pp. 3513–3533. Google Scholar[20] Damme F., Hussmann H. and Oberst J., "Spacecraft Orbit Lifetime within Two Binary Near-Earth Asteroid Systems," Planetary and Space Science, Vol. 146, Oct. 2017, pp. 1–9. doi:https://doi.org/10.1016/j.pss.2017.07.018 PLSSAE 0032-0633 CrossrefGoogle Scholar[21] Dell'Elce L., Baresi N., Naidu S., Benner L. and Scheeres D., "Numerical Investigation of the Dynamical Environment of 65803 Didymos," Advances in Space Research, Vol. 59, No. 5, 2017, pp. 1304–1320. doi:https://doi.org/10.1016/j.asr.2016.12.018 ASRSDW 0273-1177 CrossrefGoogle Scholar[22] MacMillan W. D., The Theory of the Potential, Dover, New York, 1958, pp. 56–60, Chaps. 35–36. doi:https://doi.org/10.1021/ed007p2530 Google Scholar[23] Howell K. C., "Three-Dimensional Periodic 'Halo' Orbits," Celestial Mechanics, Vol. 32, No. 1, 1984, pp. 53–71. doi:https://doi.org/10.1007/BF01358403 CLMCAV 0008-8714 CrossrefGoogle Scholar[24] Lo M. W., "Halo Orbit Generation Using the Center Manifold," Advances in the Astronautical Sciences, Vol. 95, PART 1, 1997, pp. 109–116. Google Scholar[25] Ferrari F., "Non-Keplerian Models for Mission Analysis Scenarios About Small Solar System Bodies," Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 2017. Google Scholar[26] Gill P. E., Murray W. and Wright M. H., Practical Optimization, Academic Press, New York, 1981, pp. 136–137, Chap. 4. doi:https://doi.org/10.1137/1025065 Google Scholar[27] Fan J. Y. and Yuan Y. X., "On the Quadratic Convergence of the Levenberg-Marquardt Method Without Nonsingularity Assumption," Computing, Vol. 74, No. 1, 2005, pp. 23–39. doi:https://doi.org/10.1007/s00607-004-0083-1 CrossrefGoogle Scholar[28] Howell K. C., "Families of Orbits in the Vicinity of the Collinear Libration Points," Journal of the Astronautical Sciences, Vol. 49, No. 1, Jan.–March 2001, pp. 107–125. doi:https://doi.org/10.2514/6.1998-4465 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byRobust stability and mission performance of a CubeSat orbiting the Didymos binary asteroid systemActa Astronautica, Vol. 203Image-Based Meta-Reinforcement Learning for Autonomous Guidance of an Asteroid ImpactorLorenzo Federici , Andrea Scorsoglio , Luca Ghilardi, Andrea D'Ambrosio , Boris Benedikter , Alessandro Zavoli and Roberto Furfaro 29 July 2022 | Journal of Guidance, Control, and Dynamics, Vol. 45, No. 11Heliotropic orbits at asteroid 99942 Apophis: Considering solar radiation pressure and zonal gravity perturbationsActa Astronautica, Vol. 198Small bodies non-uniform gravity field on-board learning through Hopfield Neural NetworksPlanetary and Space Science, Vol. 212Image-based Meta-Reinforcement Learning for Autonomous Terminal Guidance of an Impactor in a Binary Asteroid SystemLorenzo Federici, Andrea Scorsoglio, Luca Ghilardi, Andrea D'Ambrosio, Boris Benedikter, Alessandro Zavoli and Roberto Furfaro29 December 2021Deep Reinforcement Learning-based policy for autonomous imaging planning of small celestial bodies mappingAerospace Science and Technology, Vol. 120Trajectory Options for Hera's Milani CubeSat Around (65803) Didymos3 September 2021 | The Journal of the Astronautical Sciences, Vol. 68, No. 4Centralized Autonomous Relative Navigation of Multiple Cubesats around Didymos System25 May 2021 | The Journal of the Astronautical Sciences, Vol. 68, No. 3Controlled Spacecraft Trajectories in the Context of a Mission to a Binary Asteroid System4 March 2021 | The Journal of the Astronautical Sciences, Vol. 68, No. 1Preliminary mission profile of Hera's Milani CubeSatAdvances in Space Research, Vol. 67, No. 6Libration points and periodic orbit families near a binary asteroid system with different shapes of the secondaryActa Astronautica, Vol. 177Lift-off velocity on the surface of a binary asteroid systemActa Astronautica, Vol. 170Centralized Autonomous Relative Navigation of Multiple Spacecraft Around Small BodiesStefano Silvestrini, Andrea Capannolo, Margherita Piccinin, Michele R. Lavagna and Jesus Gil Fernandez5 January 2020LICIACube, the Italian Witness of DART Impact on Didymos What's Popular Volume 42, Number 1January 2019 CrossmarkInformationCopyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAsteroidsAstrodynamicsAstronauticsAstronomyCelestial MechanicsEuropean Space AgencyOrbital PropertyPlanetary Science and ExplorationPlanetsSolar PhysicsSpace AgenciesSpace Exploration and TechnologySpace OrbitSpace Science and Technology Keywords216 KleopatraOrbital PeriodHalo OrbitLagrangian PointESASolar SystemJet Propulsion LaboratorySteepest Descent MethodConservation of EnergySpacecraft OrbitsPDF Received25 November 2017Accepted11 July 2018Published online20 September 2018

Referência(s)