Decentralized Cooperative Collision Avoidance Control for Unmanned Rotorcraft with Bounded Acceleration
2018; American Institute of Aeronautics and Astronautics; Volume: 41; Issue: 11 Linguagem: Inglês
10.2514/1.g003430
ISSN1533-3884
AutoresErick J. Rodríguez-Seda, Jeremy J. Dawkins,
Tópico(s)Guidance and Control Systems
ResumoNo AccessEngineering NoteDecentralized Cooperative Collision Avoidance Control for Unmanned Rotorcraft with Bounded AccelerationErick J. Rodríguez-Seda and Jeremy J. DawkinsErick J. Rodríguez-SedaUnited States Naval Academy, Annapolis, Maryland 21402 and Jeremy J. DawkinsUnited States Naval Academy, Annapolis, Maryland 21402Published Online:2 Sep 2018https://doi.org/10.2514/1.G003430SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Theodoridis T. and Hu H., "Toward Intelligent Security Robots: A Survey," IEEE Transactions on Systems, Man and Cybernetics, Vol. 42, No. 6, 2012, pp. 1219–1230. doi:https://doi.org/10.1109/TSMCC.2012.2198055 ISYMAW 0018-9472 CrossrefGoogle Scholar[2] Cai G., Dias J. and Seneviratne L., "A Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advances and Future Development Trends," Unmanned Systems, Vol. 2, No. 2, 2014, pp. 175–199. doi:https://doi.org/10.1142/S2301385014300017 UNSYE3 0892-4023 CrossrefGoogle Scholar[3] Mettler B., Dever C. and Feron E., "Scaling Effects and Dynamic Characteristics of Miniature Rotorcraft," Journal of Guidance, Control, and Dynamics, Vol. 27, No. 3, 2004, pp. 466–478. doi:https://doi.org/10.2514/1.10336 JGCODS 0731-5090 LinkGoogle Scholar[4] Perritt H. H. and Sprague E. O., "Law Abiding Drones," Columbia Science and Technology Law Review, Vol. 16, No. 2, 2015, pp. 385–451. Google Scholar[5] Cao Y., Yu W., Ren W. and Chen G., "An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination," IEEE Transactions on Industrial Informatics, Vol. 9, No. 1, 2013, pp. 427–438. doi:https://doi.org/10.1109/TII.2012.2219061 CrossrefGoogle Scholar[6] Choe R., Puig-Navarro J., Cichella V., Xargay E. and Hovakimyan N., "Cooperative Trajectory Generation Using Pythagorean Hodograph Bézier Curves," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8, 2016, pp. 1744–1763. doi:https://doi.org/10.2514/1.G001531 JGCODS 0731-5090 LinkGoogle Scholar[7] Kuchar J. K. and Yang L. C., "A Review of Conflict Detection and Resolution Modeling Methods," IEEE Transactions on Intelligent Transportation Systems, Vol. 1, No. 4, 2000, pp. 179–189. doi:https://doi.org/10.1109/6979.898217 CrossrefGoogle Scholar[8] Stipanović D. M., "A Survey and Some New Results in Avoidance Control," Proceedings of the International Workshop on Dynamics and Control, CIMNE, Barcelona, Spain, 2009, pp. 166–173. Google Scholar[9] Lalish E. and Morgansen K. A., "Distributed Reactive Collision Avoidance," Autonomous Robots, Vol. 32, No. 3, 2012, pp. 207–226. doi:https://doi.org/10.1007/s10514-011-9267-7 CrossrefGoogle Scholar[10] Holt J., Biaz S. and Aji C. A., "Comparison of Unmanned Aerial System Collision Avoidance Algorithms in a Simulated Environment," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 3, 2013, pp. 881–883. doi:https://doi.org/10.2514/1.59167 JGCODS 0731-5090 LinkGoogle Scholar[11] Pallottino L., Scordio V. G., Bicchi A. and Frazzoli E., "Decentralized Cooperative Policy for Conflict Resolution in Multi-Vehicle Systems," IEEE Transactions on Robotics, Vol. 23, No. 6, 2007, pp. 1170–1183. doi:https://doi.org/10.1109/TRO.2007.909810 ITREAE 1552-3098 CrossrefGoogle Scholar[12] Mastellone S., Stipanović D. M., Graunke C. R., Intlekofer K. A. and Spong M. W., "Formation Control and Collision Avoidance for Multi-Agent Non-Holonomic Systems: Theory and Experiments," International Journal of Robotics Research, Vol. 27, No. 1, 2008, pp. 107–126. doi:https://doi.org/10.1177/0278364907084441 IJRREL 0278-3649 CrossrefGoogle Scholar[13] Lalish E., Morgansen K. A. and Tsukamaki T., "Decentralized Reactive Collision Avoidance for Multiple Unicycle-Type Vehicles," Proceedings of the American Control Conference, IEEE Publ., Piscataway, NJ, 2008, pp. 5055–5061. doi:https://doi.org/10.1109/ACC.2008.4587295 Google Scholar[14] Rodríguez-Seda E. J., "Decentralized Trajectory Tracking with Collision Avoidance Control for Teams of Unmanned Vehicles with Constant Speed," Proceedings of the American Control Conference, IEEE Publ., Piscataway, NJ, 2014, pp. 1216–1223. doi:https://doi.org/10.1109/ACC.2014.6859184 Google Scholar[15] Jenie Y. I., van Kampen E.-J., de Visser C. C., Ellerbroek J. and Hoekstra J. M., "Selective Velocity Obstacle Method for Deconflicting Maneuvers Applied to Unmanned Aerial Vehicles," Journal of Guidance, Control, and Dynamics, Vol. 38, No. 6, 2015, pp. 1140–1146. doi:https://doi.org/10.2514/1.G000737 JGCODS 0731-5090 LinkGoogle Scholar[16] Verma A. and Mettler B., "Scaling Effects in Guidance Performance in Confined Environments," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 7, 2016, pp. 1527–1538. doi:https://doi.org/10.2514/1.G001415 JGCODS 0731-5090 LinkGoogle Scholar[17] Wurman P. R., D'Andrea R. and Mountz M., "Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses," AI Magazine, Vol. 29, No. 1, 2008, pp. 9–20. doi:https://doi.org/10.1609/aimag.v29i1.2082 AIMAEK Google Scholar[18] Galway D., Etele J. and Fusina G., "Modeling of Urban Wind Field Effects on Unmanned Rotorcraft Flight," Journal of Aircraft, Vol. 48, No. 5, 2011, pp. 1613–1620. doi:https://doi.org/10.2514/1.C031325 LinkGoogle Scholar[19] Fraichard T. and Asama H., "Inevitable Collision States: A Step Towards Safer Robots?" Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE Publ., Piscataway, NJ, 2003, pp. 388–393. doi:https://doi.org/10.1163/1568553042674662 Google Scholar[20] van den Berg J., Snape J., Guy S. J. and Manocha D., "Reciprocal Collision Avoidance with Acceleration-Velocity Obstacles," Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, 2011, pp. 3475–3482. doi:https://doi.org/10.1109/ICRA.2011.5980408 Google Scholar[21] Fiorini P. and Shiller Z., "Motion Planning in Dynamic Environments Using Velocity Obstacles," International Journal of Robotics Research, Vol. 17, No. 7, 1998, pp. 760–772. doi:https://doi.org/10.1177/027836499801700706 IJRREL 0278-3649 CrossrefGoogle Scholar[22] Gillula J. H., Hoffmann G. M., Huang H., Vitus M. P. and Tomlin C. J., "Applications of Hybrid Reachability Analysis to Robotic Aerial Vehicles," International Journal of Robotics Research, Vol. 30, No. 3, 2011, pp. 335–354. doi:https://doi.org/10.1177/0278364910387173 IJRREL 0278-3649 CrossrefGoogle Scholar[23] Althoff D., Kuffner J. J., Wollherr D. and Buss M., "Safety Assessment of Robot Trajectories for Navigation in Uncertain and Dynamic Environments," Autonomous Robots, Vol. 32, No. 3, 2012, pp. 285–302. doi:https://doi.org/10.1007/s10514-011-9257-9 CrossrefGoogle Scholar[24] Rodríguez-Seda E. J. and Spong M. W., "Guaranteed Safe Motion of Multiple Lagrangian Systems with Limited Actuation," Proceedings of the IEEE Conference on Decision and Control, IEEE Publ., Piscataway, NJ, 2012, pp. 2773–2780. doi:https://doi.org/10.1109/CDC.2012.6425990 Google Scholar[25] Sakurama K. and Nakano K., "Path Tracking Control of Lagrange Systems with Obstacle Avoidance," International Journal of Control, Automation, and Systems, Vol. 10, No. 1, 2012, pp. 50–60. doi:https://doi.org/10.1007/s12555-012-0106-1 CrossrefGoogle Scholar[26] Hokayem P. F., Stipanović D. M. and Spong M. W., "Coordination and Collision Avoidance for Lagrangian Systems with Disturbances," Applied Mathematics and Computation, Vol. 217, No. 3, 2010, pp. 1085–1094. doi:https://doi.org/10.1016/j.amc.2010.03.074 AMHCBQ 0096-3003 CrossrefGoogle Scholar[27] Atinç G. M. and Stipanović D. M., "Cooperative Collision-Free Control for Lagrangian Multi-Agent Formations," Proceedings of the American Control Conference, IEEE Publ., Piscataway, NJ, 2011, pp. 2801–2806. doi:https://doi.org/10.1109/ACC.2011.5991420 Google Scholar[28] Rodríguez-Seda E. J., "Self-Triggered Avoidance Collision Control for Multi-Vehicle Systems," Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, 2015, pp. 461–466. doi:https://doi.org/10.1109/ICRA.2015.7139220 Google Scholar[29] Troy J., Erignac C. and Murray P., "Closed-Loop Motion Capture Feedback Control of Small-Scale Aerial Vehicles," AIAA [email protected] Conference and Exhibit, AIAA Paper 2007-2905, 2007. doi:https://doi.org/10.2514/6.2007-2905 LinkGoogle Scholar[30] Rodríguez-Seda E. J., Troy J. J., Erignac C. A., Murray P., Stipanović D. M. and Spong M. W., "Bilateral Teleoperation of Multiple Mobile Agents: Coordinated Motion and Collision Avoidance," IEEE Transactions on Control Systems Technology, Vol. 18, No. 4, 2010, pp. 984–992. doi:https://doi.org/10.1109/TCST.2009.2030176 IETTE2 1063-6536 CrossrefGoogle Scholar[31] Kendoul F., "Nonlinear Hierarchical Flight Controller for Unmanned Rotorcraft: Design, Stability, and Experiments," Journal of Guidance, Control, and Dynamics, Vol. 32, No. 6, 2009, pp. 1954–1958. doi:https://doi.org/10.2514/1.43768 JGCODS 0731-5090 LinkGoogle Scholar[32] Rodríguez-Seda E. J., Tang C., Stipanović D. M. and Spong M. W., "Trajectory Tracking with Collision Avoidance for Nonholonomic Vehicles with Acceleration Constraints and Limited Sensing," International Journal of Robotics Research, Vol. 33, No. 12, 2014, pp. 1569–1592. doi:https://doi.org/10.1177/0278364914537130 IJRREL 0278-3649 CrossrefGoogle Scholar[33] Stipanović D. M., Hokayem P. F., Spong M. W. and Šiljak D., "Cooperative Avoidance Control for Multiagent Systems," Journal of Dynamic Systems, Measurement, and Control, Vol. 129, No. 5, 2007, pp. 699–707. doi:https://doi.org/10.1115/1.2764510 JDSMAA 0022-0434 CrossrefGoogle Scholar[34] Rodríguez-Seda E. J., Stipanović D. M. and Spong M. W., "Lyapunov-Based Cooperative Avoidance Control for Multiple Lagrangian Systems with Bounded Sensing Uncertainties," Proceedings of the IEEE Conference on Decision and Control, IEEE Publ., Piscataway, NJ, 2011, pp. 4207–4213. doi:https://doi.org/10.1109/CDC.2011.6160783 Google Scholar[35] Leonard N. E. and Fiorelli E., "Virtual Leaders, Artificial Potentials and Coordinated Control of Groups," Proceedings of the IEEE Conference on Decision Control, IEEE Publ., Piscataway, NJ, 2001, pp. 2968–2973. doi:https://doi.org/10.1109/CDC.2001.980728 Google Scholar[36] Rodríguez-Seda E. J., Stipanović D. M. and Spong M. W., "Guaranteed Collision Avoidance for Autonomous Systems with Acceleration Constraints and Sensing Uncertainties," Journal of Optimization Theory and Applications, Vol. 168, No. 3, 2016, pp. 1014–1038. doi:https://doi.org/10.1007/s10957-015-0824-7 JOTABN 0022-3239 CrossrefGoogle Scholar[37] Koren Y. and Borenstein J., "Potential Field Methods and their Inherent Limitations for Mobile Robot Navigation," Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, 1991, pp. 1398–1404. doi:https://doi.org/10.1109/ROBOT.1991.131810 Google Scholar[38] Ferrera E., Castaño A. R., Capitán J., Ollero A. and Marrón P. J., "Decentralized Collision Avoidance for Large Teams of Robots," Proceedings of the International Conference on Advanced Robotics, IEEE Publ., Piscataway, NJ, 2013, pp. 1–6. doi:https://doi.org/10.1109/ICAR.2013.6766474 Google Scholar[39] Trodden P. and Richards A., "Distributed Model Predictive Control of Linear Systems with Persistent Disturbances," International Journal of Control, Vol. 83, No. 8, 2010, pp. 1653–1663. doi:https://doi.org/10.1080/00207179.2010.485280 IJCOAZ 0020-7179 CrossrefGoogle Scholar[40] Khalil H. K., Nonlinear Systems, Prentice Hall, New Jersey, 2002, Chap. 3. Google Scholar[41] Bolandi H., Rezaei M., Mohsenipour R., Nemati H. and Smailzadeh S., "Attitude Control of a Quadrotor with Optimized PID Controller," Intelligent Control and Automation, Vol. 4, No. 3, 2013, pp. 335–342. doi:https://doi.org/10.4236/ica.2013.43039 CrossrefGoogle Scholar[42] Kendoul F., Lara D., Fantoni-Coichot I. and Lozano R., "Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter," Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4, 2007, pp. 1049–1061. doi:https://doi.org/10.2514/1.27882 JGCODS 0731-5090 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byDecentralized Weapon–Target Assignment Under Asynchronous CommunicationsJournal of Guidance, Control, and Dynamics, Vol. 46, No. 2Motion information based avoidance control for 3-D multi-agent systemsJournal of the Franklin Institute, Vol. 358, No. 18Collision Avoidance Control with Motion Information for Multiple Tractor-trailer VehiclesMultiple Leader-Follower Coordination for Cooperative MissionsCamilla Tabasso and Venanzio Cichella4 January 2021Cooperative Avoidance Control with Relative Velocity Information and Collision Sector Functions for Car-like Robots *Cooperative Avoidance Control With Velocity-Based Detection RegionsIEEE Control Systems Letters, Vol. 4, No. 2Cellular Automata based Decentralized Cooperative Collision Avoidance Control for Multiple Mobile Robots What's Popular Volume 41, Number 11November 2018 CrossmarkInformationThis material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAircraft Operations and TechnologyAircraft Stability and ControlAircraftsControl TheoryFeedback ControlFlight Control SurfacesGuidance, Navigation, and Control SystemsOptimal Control TheoryQuadcopterRotorcraftsUnmanned Aerial Vehicle KeywordsRotorcraftsModel Predictive ControlQuadrotorUnmanned VehiclesYawMathematical ModelsFeedback LinearizationVehicle TrajectoriesNavigation FunctionControl AlgorithmPDF Received6 November 2017Accepted12 June 2018Published online2 September 2018
Referência(s)