Artigo Revisado por pares

Chameleon: A Hybrid, Proactive Auto-Scaling Mechanism on a Level-Playing Field

2018; Institute of Electrical and Electronics Engineers; Volume: 30; Issue: 4 Linguagem: Inglês

10.1109/tpds.2018.2870389

ISSN

2161-9883

Autores

André Bauer, Nikolas Herbst, Simon Spinner, Ahmed Ali-Eldin, Samuel Kounev,

Tópico(s)

Data Stream Mining Techniques

Resumo

Auto-scalers for clouds promise stable service quality at low costs when facing changing workload intensity. The major public cloud providers provide trigger-based auto-scalers based on thresholds. However, trigger-based auto-scaling has reaction times in the order of minutes. Novel auto-scalers from literature try to overcome the limitations of reactive mechanisms by employing proactive prediction methods. However, the adoption of proactive auto-scalers in production is still very low due to the high risk of relying on a single proactive method. This paper tackles the challenge of reducing this risk by proposing a new hybrid auto-scaling mechanism, called Chameleon, combining multiple different proactive methods coupled with a reactive fallback mechanism. Chameleon employs on-demand, automated time series-based forecasting methods to predict the arriving load intensity in combination with run-time service demand estimation to calculate the required resource consumption per work unit without the need for application instrumentation. We benchmark Chameleon against five different state-of-the-art proactive and reactive auto-scalers one in three different private and public cloud environments. We generate five different representative workloads each taken from different real-world system traces. Overall, Chameleon achieves the best scaling behavior based on user and elasticity performance metrics, analyzing the results from 400 hours aggregated experiment time.

Referência(s)