Artigo Revisado por pares

Review of Far-Field Drag Decomposition Methods for Aircraft Design

2018; American Institute of Aeronautics and Astronautics; Volume: 56; Issue: 1 Linguagem: Inglês

10.2514/1.c034781

ISSN

1533-3868

Autores

Yitong Fan, Weipeng Li,

Tópico(s)

Fluid Dynamics and Turbulent Flows

Resumo

No AccessSurvey PapersReview of Far-Field Drag Decomposition Methods for Aircraft DesignYitong Fan and Weipeng LiYitong FanShanghai Jiao Tong University, 200240 Shanghai, China and Weipeng LiShanghai Jiao Tong University, 200240 Shanghai, ChinaPublished Online:20 Sep 2018https://doi.org/10.2514/1.C034781SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Meredith P. T., "Viscous Phenomenon Affecting High-Lift Systems and Suggestions for Future CFD Development," AGARD CP-315, High-Lift Systems Aerodynamics, Sept. 1993, pp. 19-1–19-8. Google Scholar[2] Jahanmiri M., "Aircraft Drag Reduction: An Overview," Chalmers Univ. of Technology Research Rept. 2011:02, Göteborg, Sweden, 2011, p. 14. Google Scholar[3] Toubin H. and Bailly D., "Development and Application of a New Unsteady Far-Field Drag Decomposition Method," AIAA Journal, Vol. 53, No. 11, 2015, pp. 3414–3429. doi:https://doi.org/10.2514/1.J054002 AIAJAH 0001-1452 LinkGoogle Scholar[4] Gariépy M., Trépanier J.-Y. and Malouin B., "Generalization of the Far-Field Drag Decomposition Method to Unsteady Flows," AIAA Journal, Vol. 51, No. 6, 2013, pp. 1309–1319. doi:https://doi.org/10.2514/1.J051609 AIAJAH 0001-1452 LinkGoogle Scholar[5] Esquieu S., "Aircraft Drag Extraction from Patched Grid Computations," AIAA Paper 2003-3659, 2003. doi:https://doi.org/10.2514/6.2003-3659 LinkGoogle Scholar[6] Gariépy M., Malouin B., Trépanier J.-Y. and Laurendeau É., "Far-Field Drag Decomposition Applied to the Drag Prediction Workshop 5 Cases," Journal of Aircraft, Vol. 50, No. 6, 2013, pp. 1822–1831. doi:https://doi.org/10.2514/1.C032204 LinkGoogle Scholar[7] Betz A., "A Method for the Direct Determination of Wing-Section Drag," NACA TM-337, 1925. Google Scholar[8] Jones B., "Measurement of Profile Drag by the Pitot-Traverse Method," Aeronautical Research Council TM 1688, Great Britain, 1936. Google Scholar[9] Oswatitsch K., Gas Dynamics, Academic Press, New York, 1956, pp. 207–210. Google Scholar[10] Maskell E. C., "Progress Towards a Method for the Measurement of the Components of the Drag of a Wing of Finite Span," Royal Aircraft Establishment TR 72232, Farnborough, 1972. Google Scholar[11] Steger J. L. and Baldwin B. S., "Shock Waves and Drag in the Numerical Calculation of Compressible, Irrotational Transonic Flow," AIAA Journal, Vol. 11, No. 7, 1973, pp. 903–904. doi:https://doi.org/10.2514/3.50538 AIAJAH 0001-1452 LinkGoogle Scholar[12] Yu N. J., Chen H. C., Samant S. S. and Rubbert P. E., "Inviscid Drag Calculations for Transonic Flows," AIAA Paper 1983-1928, 1983. doi:https://doi.org/10.2514/6.1983-1928 LinkGoogle Scholar[13] Lock R.-C., "Prediction of the Drag of Wings at Subsonic Speeds by Viscous/Inviscid Interaction Techniques," Aircraft Drag Prediction and Reduction, AGARD R-723, 1985. Google Scholar[14] Destarac D. and van der Vooren J., "Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components," Aerospace Science & Technology, Vol. 8, No. 6, 2004, pp. 545–556. doi:https://doi.org/10.1016/j.ast.2004.03.004 CrossrefGoogle Scholar[15] Méheut M. and Bailly D., "Drag-Breakdown Methods from Wake Measurements," AIAA Journal, Vol. 46, No. 4, 2008, pp. 847–862. doi:https://doi.org/10.2514/1.29051 AIAJAH 0001-1452 LinkGoogle Scholar[16] Gariépy M., Trépanier J.-Y. and Masson C., "Improvements in Accuracy and Efficiency for a Far-Field Drag Prediction and Decomposition Method," AIAA Paper 2010-4678, 2010. doi:https://doi.org/10.2514/6.2010-4678 LinkGoogle Scholar[17] Vos J. B., Sanchi S. and Gehri A., "Drag Prediction Workshop 4 Results Using Different Grids Including Near-Field/Far-Field Drag Analysis," Journal of Aircraft, Vol. 50, No. 5, 2013, pp. 1615–1627. doi:https://doi.org/10.2514/1.C032161 LinkGoogle Scholar[18] Hue D. and Esquieu S., "Computational Drag Prediction of the dpw4 Configuration Using the Far-Field Approach," Journal of Aircraft, Vol. 48, No. 5, 2011, pp. 1658–1670. doi:https://doi.org/10.2514/1.C031337 LinkGoogle Scholar[19] Brodersen O. P., Rakowitz M., Amant S., Larrieu P., Destarac D. and Sutcliffe M., "Airbus, ONERA, and DLR Results from the Second AIAA Drag Prediction Workshop," Journal of Aircraft, Vol. 42, No. 4, 2005, pp. 932–940. doi:https://doi.org/10.2514/1.8662 LinkGoogle Scholar[20] Destarac D., "Drag Extraction from Numerical Solutions to the Equations of Fluid Dynamics: The Far-Field Philosophy," Maîtrise de la traînée et de l'impact sur l'environnement, 43ème Congrès d'Aérodynamique Appliquée de la 3AF, Poitiers, France, 2008. Google Scholar[21] Kimzey W. F., Covert E. E., Rooney E. C., Richey G. K. and James C. R., Thrust and Drag: Its Prediction and Verification, AIAA, Reston, VA, 1985, pp. 121–171.doi:https://doi.org/10.2514/4.865732 LinkGoogle Scholar[22] Kusunose K., Crowder J. and Miller G., "Installed Powered Engine Effects on Drag Using a Wake-Integral Method," AIAA Paper 2000-240, 2000. doi:https://doi.org/10.2514/6.2000-2400 LinkGoogle Scholar[23] Tognaccini R., "Drag Computation and Breakdown in Power-On Conditions," Journal of Aircraft, Vol. 42, No. 1, 2005, pp. 245–252. doi:https://doi.org/10.2514/1.8510 LinkGoogle Scholar[24] Toubin H., Bailly D. and Costes M., "Improved Unsteady Far-Field Drag Breakdown Method and Application to Complex Cases," AIAA Journal, Vol. 54, No. 6, 2016, pp. 1907–1921. doi:https://doi.org/10.2514/1.J054756 AIAJAH 0001-1452 LinkGoogle Scholar[25] van Dam C. P., "Recent Experience with Different Methods of Drag Prediction," Progress in Aerospace Sciences, Vol. 35, No. 8, 1999, pp. 751–798. doi:https://doi.org/10.1016/S0376-0421(99)00009-3 PAESD6 0376-0421 CrossrefGoogle Scholar[26] Yates J. E. and Donald C. D., "A Fundamental Study of Drag and an Assessment of Conventional Drag-due-to-Lift Reduction Devices," NASA CR 4004, Washington, D.C., 1986. Google Scholar[27] Spalart P. R., "Airpaine Trailing Vortices," Annual Review of Fluid Mechanics, Vol. 30, No. 1, 1998, pp. 107–138. doi:https://doi.org/10.1146/annurev.fluid.30.1.107 ARVFA3 0066-4189 CrossrefGoogle Scholar[28] Kroo I., "Drag due to Lift: Concepts for Prediction and Reduction," Annual Review of Fluid Mechanics, Vol. 33, No. 1, 2001, pp. 587–617. doi:https://doi.org/10.1146/annurev.fluid.33.1.587 ARVFA3 0066-4189 CrossrefGoogle Scholar[29] Wu J. Z., Lu X. Y. and Zhuang L. X., "Integral Force Acting on a Body due to Local Flow Structures," Journal of Fluid Mechanics, Vol. 576, April 2007, pp. 265–286. doi:https://doi.org/10.1017/S0022112006004551 JFLSA7 0022-1120 CrossrefGoogle Scholar[30] Wu J.-Z., Ma H.-Y. and Zhou M.-D., Vortical Flows, Springer, Berlin, 2015, Chap. 9.doi:https://doi.org/10.1007/978-3-662-47061-9 CrossrefGoogle Scholar[31] Zhu G., Bearman P. W. and Graham J. M. R., "Prediction of Drag and Lift Using Velocity and Vorticity Fields," Aeronautical Journal, Vol. 106, No. 1064, 2007, pp. 547–554. doi:https://doi.org/10.1017/S0001924000004875 CrossrefGoogle Scholar[32] Mele B. and Tognaccini R., "Aerodynamic Force by Lamb Vector Integrals in Compressible Flow," Physics of Fluids, Vol. 26, No. 5, 2014, Paper 056104. doi:https://doi.org/10.1063/1.4875015 CrossrefGoogle Scholar[33] Mele B., Ostieri M. and Tognaccini R., "Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows," AIAA Journal, Vol. 54, No. 4, 2016, pp. 1198–1208. doi:https://doi.org/10.2514/1.J054363 AIAJAH 0001-1452 LinkGoogle Scholar[34] Mele B., Ostieri M. and Tognaccini R., "Aircraft Lift and Drag Decomposition in Transonic Flows," Journal of Aircraft, Vol. 54, May 2017, pp. 1–12. doi:https://doi.org/10.2514/1.C034288 LinkGoogle Scholar[35] Marongiu C. and Tognaccini R., "Far-Field Analysis of the Aerodynamic Force by Lamb Vector Integrals," AIAA Journal, Vol. 48, No. 11, 2010, pp. 2543–2555. doi:https://doi.org/10.2514/1.J050326 AIAJAH 0001-1452 LinkGoogle Scholar[36] Marongiu C., Tognaccini R. and Ueno M., "Lift and Lift-Induced Drag Computation by Lamb Vector Integration," AIAA Journal, Vol. 51, No. 6, 2013, pp. 1420–1430. doi:https://doi.org/10.2514/1.J052104 AIAJAH 0001-1452 LinkGoogle Scholar[37] Noca F., Shiels D. and Jeon D., "A Comparison of Methods for Evaluating Time-Dependent Fluid Dynamic Forces on Bodies, Using Only Velocity Fields and Their Derivatives," Journal of Fluids & Structures, Vol. 13, No. 5, 1999, pp. 551–578. doi:https://doi.org/10.1006/jfls.1999.0219 CrossrefGoogle Scholar[38] Chao D. D. and van Dam C. P., "Airfoil Drag Prediction and Decomposition," Journal of Aircraft, Vol. 36, No. 4, 1999, pp. 675–681. doi:https://doi.org/10.2514/2.2510 LinkGoogle Scholar[39] van Dam C. P. and Nikfetrat K., "Accurate Prediction of Drag Using Euler Methods," Journal of Aircraft, Vol. 29, No. 3, 1992, pp. 516–519. doi:https://doi.org/10.2514/3.46194 LinkGoogle Scholar[40] Cummings R. M., Giles M. B. and Shrinivas G. N., "Analysis of the Elements of Drag in Three-Dimensional Viscous and Inviscid Flows," AIAA Paper 1996-2482, 1996. doi:https://doi.org/10.2514/6.1996-2482 LinkGoogle Scholar[41] Chao D. D. and van Dam C. P., "Wing Drag Prediction and Decomposition," Journal of Aircraft, Vol. 43, No. 1, 2006, pp. 82–90. doi:https://doi.org/10.2514/1.12311 LinkGoogle Scholar[42] Wu J. C., Hackett J. E. and Lilley D. E., "A Generalized Wake-Integral Approach for Drag Determination in Three-Dimensional Flows," AIAA Paper 1979-279, Jan. 1979. doi:https://doi.org/10.2514/6.1979-279 LinkGoogle Scholar[43] Brune G. W., "Quantitative Low-Speed Wake Surveys," Journal of Aircraft, Vol. 31, No. 2, 1994, pp. 249–255. doi:https://doi.org/10.2514/3.46481 LinkGoogle Scholar[44] Giles M. B. and Cummings R. M., "Wake Integration for Three-Dimensional Flowfield Computations: Theoretical Development," Journal of Aircraft, Vol. 36, No. 2, 1999, pp. 357–365. doi:https://doi.org/10.2514/2.2465 LinkGoogle Scholar[45] Yamazaki W., Matsushima K. and Nakahashi K., "Drag Prediction and Decomposition Based on cfd Computations," JSME International Journal, Vol. 48, No. 2, 2005, pp. 235–240. doi:https://doi.org/10.1299/jsmeb.48.235 JIJOEA 0913-185X CrossrefGoogle Scholar[46] Kusunose K., Crowder J. P. and Watzlavick R. L., "Wave Drag Extraction from Profile Drag Based on a Wake-Integral Method," AIAA Paper 1999-275, 1999. doi:https://doi.org/10.2514/6.1999-275 LinkGoogle Scholar[47] Hue D., Vermeersch O., Bailly D., Brunet V. and Forte M., "Experimental and Numerical Methods for Transition and Drag Predictions of Laminar Airfoils," AIAA Journal, Vol. 53, No. 9, 2015, pp. 2694–2712. doi:https://doi.org/10.2514/1.J053788 AIAJAH 0001-1452 LinkGoogle Scholar[48] Jackson A. and Martineau D., "Computation of Wave and Viscous Drag Using Feature Extraction Techniques," AIAA Paper 2005-4626, 2005. doi:https://doi.org/10.2514/6.2005-4626 LinkGoogle Scholar[49] Lanzetta M., Mele B. and Tognaccini R., "Advances in Aerodynamic Drag Extraction by Far-Field Methods," Journal of Aircraft, Vol. 52, No. 6, 2015, pp. 1886–1873. doi:https://doi.org/10.2514/1.C033095 LinkGoogle Scholar[50] Lovely D. and Haimes R., "Shock Detection from Computational Fluid Dynamics Results," AIAA Paper 1999-3285, 1999. doi:https://doi.org/10.2514/6.1999-3285 LinkGoogle Scholar[51] Paparone L. and Tognaccini R., "Computational Fluid Dynamics-Based Drag Prediction and Decomposition," AIAA Journal, Vol. 41, No. 9, 2003, pp. 1647–1657. doi:https://doi.org/10.2514/2.7300 AIAJAH 0001-1452 LinkGoogle Scholar[52] Ueno M., Yamamoto K., Tanaka K., Murayama M. and Tognaccini R., "Far-Field Drag Analysis of NASA Common Research Model Simulation," Journal of Aircraft, Vol. 50, No. 2, 2013, pp. 388–397. doi:https://doi.org/10.2514/1.C031766 LinkGoogle Scholar[53] Barthet A., Airiau C., Braza M. and Tourrette L., "Adjoint-Based Error Correction Applied to Far-Field Drag Breakdown on Structured Grid," AIAA Paper 2006-3315, 2006. doi:https://doi.org/10.2514/6.2006-3315 LinkGoogle Scholar[54] Vatsa V. N., "Accurate Numerical Solutions for Transonic Viscous Flow over Finite Wings," Journal of Aircraft, Vol. 24, No. 6, 1987, pp. 377–385. doi:https://doi.org/10.2514/3.45456 LinkGoogle Scholar[55] Hunt D., Cummings R. and Giles M., "Determination of Drag from Three-Dimensional Viscous and Inviscid Flowfield Computations," AIAA Paper 1997-2257, 1997, pp. 848–853. doi:https://doi.org/10.2514/6.1997-2257 LinkGoogle Scholar[56] Schmitt V. and Destarac D., "Recent Progress in Drag Prediction and Reduction for Civil Transport Aircraft at Onera," AIAA Paper 1998-137, 1998. doi:https://doi.org/10.2514/6.1998-137 LinkGoogle Scholar[57] Snyder T. and Povitsky A., "Far-Field Induced Drag Prediction Using Vorticity Confinement Technique," Journal of Aircraft, Vol. 51, No. 6, 2014, pp. 1953–1958. doi:https://doi.org/10.2514/1.C032719 LinkGoogle Scholar[58] Agarwal R., "Computational Fluid Dynamics of Whole-Body Aircraft," Annual Review of Fluid Mechanics, Vol. 31, No. 1, 1999, pp. 125–169. doi:https://doi.org/10.1146/annurev.fluid.31.1.125 ARVFA3 0066-4189 CrossrefGoogle Scholar[59] Kashitani M., Suganuma Y., Date H., Nakao S., Takita Y. and Yamaguchi Y., "Experimental Study on Aerodynamic Characteristics of Blended-Wing-Body by a Wake Integration Method," 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-1228, Jan. 2015. doi:https://doi.org/10.2514/6.2015-1228 LinkGoogle Scholar[60] Young T. M., Humphreys B. and Fielding J. P., "Investigation of Hybrid Laminar Flow Control (HLFC) Surfaces," Aircraft Design, Vol. 4, No. 2, 2001, pp. 127–146. doi:https://doi.org/10.1016/S1369-8869(01)00010-6 CrossrefGoogle Scholar[61] Yamazaki W., Matsushima K. and Nakahashi K., "Application of Drag Decomposition Method to cfd Computation Results," AIAA Paper 2005-4723, 2005. doi:https://doi.org/10.2514/6.2005-4723 LinkGoogle Scholar[62] Yamazaki W., Matsushima K. and Nakahashi K., "Aerodynamic Design Optimization Using the Drag-Decomposition Method," AIAA Journal, Vol. 46, No. 5, 2008, pp. 1096–1106. doi:https://doi.org/10.2514/1.30342 AIAJAH 0001-1452 LinkGoogle Scholar[63] Bisson F. and Nadarajah S., "Adjoint-Based Aerodynamic Design Optimization Using the Drag Decomposition Method," AIAA Paper 2013-2909, 2013. doi:https://doi.org/10.2514/6.2013-2909 LinkGoogle Scholar[64] Gariépy M., Malouin B., Tribes C. and Trépanier J.-Y., "Direct Search Airfoil Optimization Using Far-Field Drag Decomposition Results," AIAA Paper 2015-1720, 2015, pp. 429–433. doi:https://doi.org/10.2514/6.2015-1720 LinkGoogle Scholar[65] Gariépy M., Trépanier J.-Y. and Masson C., "Convergence Criterion for a Far-Field Drag Prediction and Decomposition Method," AIAA Journal, Vol. 49, No. 12, 2011, pp. 2814–2818. doi:https://doi.org/10.2514/1.J050865 AIAJAH 0001-1452 LinkGoogle Scholar[66] Yamazaki W., Matsushima K. and Nakahashi K., "Drag Decomposition-Based Adaptive Mesh Refinement," Journal of Aircraft, Vol. 44, No. 6, 2007, pp. 1896–1905. doi:https://doi.org/10.2514/1.31064 LinkGoogle Scholar[67] Kevorkian J. and Cole J. D., Perturbation Methods in Applied Mathematics, Springer, New York, 1981, pp. 17–104, Chap. 2. doi:https://doi.org/10.1007/978-1-4757-4213-8_2 CrossrefGoogle Scholar[68] Drela M., "Power Balance in Aerodynamic Flows," AIAA Journal, Vol. 47, No. 7, 2009, pp. 1761–1771. doi:https://doi.org/10.2514/1.42409 AIAJAH 0001-1452 LinkGoogle Scholar[69] Laban M., "Aircraft Drag and Thrust Analysis (Airdata)," Proceedings of the Workshop on EU-Research on Aerodynamic Engine/Aircraft Integration for Transport Aircraft, German Aerospace Research Center, DLR Tech. Rept. NLR-TP-2000-473, Brunswick, Germany, 2000. Google Scholar[70] Fleming W. A. and Gabriel D. S., "A Survey of Methods for Turbojet Thrust Measurement Applicable to Flight Installations," National Advisory Committee for Aeronautics, Research Memorandum, 1955. Google Scholar[71] Sibilli T. and Savill M., "Computational Fluid Dynamics Drag Prediction and Decomposition for Propulsive System Integration," ASME Paper GT2011-46214, New York, June 2011, pp. 257–264. doi:https://doi.org/10.1115/GT2011-46214 Google Scholar[72] Malouin B., Gariépy M., Trépanier J.-Y. and Laurendeau É., "Engine Pre-Entry Thrust and Standard Net Thrust Evaluation Based on the Far-Field Method," Aerospace Science and Technology, Vol. 45, Sept. 2015, pp. 50–59. doi:https://doi.org/10.1016/j.ast.2015.04.014 CrossrefGoogle Scholar[73] Malouin B., Trépanier J.-Y. and Laurendeau É., "Installation and Interference Drag Decomposition via Rans Far-Field Methods," Aerospace Science and Technology, Vol. 54, July 2016, pp. 132–142. doi:https://doi.org/10.1016/j.ast.2016.04.020 CrossrefGoogle Scholar[74] White F., Fluid Mechanics, 7th ed., McGraw–Hill Series in Mechanical Engineering, McGraw–Hill, New York, 2003, pp. 65–124, Chap. 3. Google Scholar[75] Warsi Z., Fluid Dynamics: Theoretical and Computational Approaches, CRC Press, Boca Raton, FL, 1993, Chap. 2. Google Scholar[76] Anderson J., Fundamentals of Aerodynamics, McGraw–Hill, Boston, 1991, pp. 47–107, Chap. 2. Google Scholar[77] Takizawa K., Tezduyar T. E. and Buscher A., "Space-Time Computational Analysis of MAV Flapping-Wing Aerodynamics with Wing Clapping," Computational Mechanics, Vol. 55, No. 6, June 2015, pp. 1131–1141. doi:https://doi.org/10.1007/s00466-014-1095-0 CMADEJ CrossrefGoogle Scholar[78] Stuermer A. and Yin J., "Aerodynamic and Aeroacoustic Analysis of Contra-Rotating Open Rotor Propulsion Systems at Low-Speed Flight Conditions," Numerical & Experimental Fluid Mechanics, Vol. 112, Notes on Numerical Fluid Mechanics, Springer, Berlin, 2010, pp. 481–488.doi:https://doi.org/10.1007/978-3-642-14243-7_59 CrossrefGoogle Scholar[79] Brunet V., "Computational Study of Buffet Phenomenon with Unsteady RANS Equations," AIAA Paper 2003-3679, 2003, pp. 121–128. doi:https://doi.org/10.2514/6.2003-3679 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byAerodynamic Analysis of a Box Winglet: Viscous and Compressible Flow Predictions23 July 2022 | Aerotecnica Missili & Spazio, Vol. 101, No. 4Drag decomposition of a subsonic wing via a far-field, exergy-based method13 October 2022 | Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 140Invariant Vortex-Force Theory Extending Classical Aerodynamic Theories to Transonic FlowsCamille Fournis, Didier Bailly and Renato Tognaccini2 May 2022 | AIAA Journal, Vol. 60, No. 9Drag Decomposition of Full Aircraft Configurations Using Partial-Pressure FieldsPierce Hart, Christopher J. Axten, Mark D. Maughmer and Sven Schmitz20 June 2022Wave drag prediction using the Lamb vector in two-dimensional steady transonic flowsCamille Fournis20 June 2022Sub-scale flight test model design: Developments, challenges and opportunitiesProgress in Aerospace Sciences, Vol. 130Analysis of a Wing–Fuselage Biplane with Trailing-Edge Flaps in Low-Speed FlowThai Duong Nguyen , Masashi Kashitani, Kazuhiro Kusunose, Masato Taguchi and Yoshihiro Takita25 September 2021 | Journal of Aircraft, Vol. 59, No. 2A Brief Review on Aerodynamic Performance of Wingtip Slots and Research Prospect8 December 2021 | Journal of Bionic Engineering, Vol. 18, No. 6Numerical and Experimental Study of Aerodynamic Performances of a Morphing Micro Air Vehicle8 July 2021 | Applied Mechanics, Vol. 2, No. 3Best Winglet of Minimum Induced Drag: Viscous and Compressible Flow Predictions Lorenzo Russo, Ettore Saetta, Renato Tognaccini, Giulio Dacome and Luciano Demasi28 July 2021An invariant vortex-force theory related to classical far-field analyses in transonic flowsCamille Fournis, Didier Bailly and Renato Tognaccini28 July 2021Definition of an Invariant Lamb-Vector-Based Aerodynamic Force Breakdown Using Far-Field Flow SymmetriesCamille Fournis, Didier Bailly and Renato Tognaccini11 November 2020 | AIAA Journal, Vol. 59, No. 1Multi-fidelity Surrogate Assisted Design Optimisation of an Airfoil under Uncertainty Using Far-Field Drag Approximation16 July 2021A review of installation effects of ultra-high bypass ratio enginesProgress in Aerospace Sciences, Vol. 119Box Wing and Induced Drag: Compressibility Effects in Subsonic and Transonic RegimesLorenzo Russo, Renato Tognaccini and Luciano Demasi17 February 2020 | AIAA Journal, Vol. 58, No. 6Box Wing and Induced Drag: Compressibility Effect in Subsonic and Transonic RegimesLorenzo Russo, Renato Tognaccini and Luciano Demasi5 January 2020Aerodynamic Force Breakdown in Reversible and Irreversible Components by Vortex Force TheoryLin L. Kang, Lorenzo Russo, Renato Tognaccini, Jie Z. Wu and Wei D. Su29 August 2019 | AIAA Journal, Vol. 57, No. 11On the concept and theory of induced drag for viscous and incompressible steady flowPhysics of Fluids, Vol. 31, No. 6 What's Popular Volume 56, Number 1January 2019 CrossmarkInformationCopyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0021-8669 (print) or 1533-3868 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsBoundary LayersComputational Fluid DynamicsFlow RegimesFluid DynamicsFluid Flow PropertiesNumerical AnalysisSkin FrictionVortex Dynamics KeywordsAircraft DesignHybrid Laminar Flow ControlSkin Friction DragAerospace EngineeringAstronauticsAeronauticsAccelerating FlowVorticity Confinement TechniqueAircraft ConfigurationsInterference DragAcknowledgmentsThe authors acknowledge the funding support from National Basic Research Program of China (973 program; Grant Nos. 2014CB744802, 2014CB744804) and the support from National Natural Science Foundation of China (11772194), and the support from Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems (VATLAB-2018-02).PDF Received24 October 2017Accepted6 June 2018Published online20 September 2018

Referência(s)
Altmetric
PlumX