
Antimicrobial residues in animal products may induce Salmonella spp. resistance in humans
2018; Future Science Ltd; Volume: 10; Issue: 21 Linguagem: Inglês
10.4155/fmc-2018-0247
ISSN1756-8927
AutoresCleber Eduardo Galvão, Suzana M. Ribeiro, Gislaine Greice de Oliveira Silva Silveira, Octávio Luiz Franco,
Tópico(s)Antibiotic Resistance in Bacteria
ResumoFuture Medicinal ChemistryVol. 10, No. 21 CommentaryAntimicrobial residues in animal products may induce Salmonella spp. resistance in humansCleber E Galvão, Suzana M Ribeiro, Gislaine Greice de O Silva & Octavio L FrancoCleber E Galvão S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil, Suzana M Ribeiro Centro de Análises Proteômicas e Bioquímicas de Brasília, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil, Gislaine Greice de O Silva S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil & Octavio L Franco*Author for correspondence: E-mail Address: ocfranco@gmail.com S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil Centro de Análises Proteômicas e Bioquímicas de Brasília, Universidade Católica de Brasília, Brasília, Distrito Federal, BrazilPublished Online:30 Nov 2018https://doi.org/10.4155/fmc-2018-0247AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: antimicrobial residuesfoodborneSalmonella spp.References1 Wassenaar TM, Jun S-R, Wanchai V et al. Insights from comparative genomics of the genus Salmonella. In: Current Topics in Salmonella and Salmonellosis. Mares M (Ed.). IntechOpen, London, UK, 3 (2017).Crossref, Google Scholar2 Mouttotou N, Ahmad S, Kamran Z, Koutoulis KC. Prevalence, risks and antibiotic resistance of Salmonella in poultry production chain. In: Current Topics in Salmonella and Salmonellosis. Mares M (Ed.). IntechOpen, London, UK. 215 (2017).Crossref, Google Scholar3 Leekitcharoenphon P, Nielsen EM, Kaas RS, Lund O, Aarestrup FM. Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS ONE 9(2), e87991 (2014).Crossref, Medline, Google Scholar4 Pui CF, Wong WC, Chai LC et al. Salmonella: a foodborne pathogen. Int. Food. Res. J. 18(2), 465–473 (2011).Google Scholar5 Lake IR, Barker GC. Climate change, foodborne pathogens and illness in higher-income countries. Curr. Environ. Health Rep. 5(1), 187–196 (2018).Crossref, Medline, CAS, Google Scholar6 Boeckel TP Van, Brower C, Gilbert M et al. Global trends in antimicrobial use in food animals. Proc. Natl Acad. Sci. USA 112(18), 5649–5654 (2015).Crossref, Medline, Google Scholar7 Vishnuraj MR, Kandeepan G, Rao KH, Chand S, Kumbhar V. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: a comprehensive review. Cogent. Food Agric. 2(1), 1235458 (2016).Google Scholar8 Cox LM, Blaser MJ. Antibiotics in early life and obesity. Nat. Ver. Endocrinol. 11(3), 182–190 (2015).Crossref, Medline, Google Scholar9 Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front. Microbiol. 6, 1–9 (2015).Crossref, Medline, Google Scholar10 Hilbert F, Smulders FJM, Chopra-Dewasthaly R, Paulsen P. Salmonella in the wildlife–human interface. Food Res. Int. 45(2), 603–608 (2012).Crossref, Google Scholar11 Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 28(4), 901–937 (2015).Crossref, Medline, CAS, Google Scholar12 Eng S-K, Pusparajah P, Mutalib N-SA, Ser H-L, Chan K-G, Lee L-H. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 8(3), 284–293 (2015).Crossref, CAS, Google Scholar13 Verdier J, Luedde T, Sellge G. Biliary mucosal barrier and microbiome. Viszeralmedizin 31(3), 156–161 (2015).Medline, Google Scholar14 Nhung NT, Van NTB, Cuong N Van et al. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam. Int. J. Food Microbiol. 266, 301–309 (2018).Crossref, Medline, CAS, Google Scholar15 Beyene T. Veterinary drug residues in food-animal products: its risk factors and potential effects on public health. J. Vet. Sci. Technol. 7(1), 1–7 (2015).Crossref, Google Scholar16 Chowdhury S, Hassan MM, Alam M et al. Antibiotic residues in milk and eggs of commercial and local farms at Chittagong, Bangladesh. Vet. World 8(4), 467–471 (2015).Crossref, Medline, CAS, Google Scholar17 European Commission. Commission staff working document on the implementation of national residue monitoring plans in the member states in 2009. Bruxelas (2010). www.ec.europa.eu/food/food/chemicalsafety/residues/workdoc_2010_en.pdf Google Scholar18 Ramatla T, Ngoma L, Adetunji M, Mwanza M. Evaluation of antibiotic residues in raw meat using different analytical methods. Antibiotics (Basel) 6(4), 1–17 (2017).Google Scholar19 Mund MD, Khan UH, Tahir U, Mustafa B-E-, Fayyaz A. Antimicrobial drug residues in poultry products and implications on public health: a review. Int. J. Food Prop. 20(7), 1433–1446 (2017).Crossref, CAS, Google Scholar20 Al-Ghamdi MS, Al-Mustafa ZH, El-Morsy F, Al-Faky A, Haider I, Essa H. Residues of tetracycline compounds in poultry products in the eastern province of Saudi Arabia. Public Health 114(4), 300–304 (2000).Crossref, Medline, CAS, Google Scholar21 Goetting V, Lee KA, Tell LA. Pharmacokinetics of veterinary drugs in laying hens and residues in eggs: a review of the literature. J. Vet. Pharmacol. Ther. 34(6), 521–556 (2011).Crossref, Medline, CAS, Google Scholar22 Hakem A, Titouche Y, Houali K et al. Screening of antibiotics residues in poultry meat by microbiological methods. Bulletin UASVM 70(1), 77–81 (2013).Google Scholar23 Barbosa J, Freitas A, Moura S, Mourão JL, Noronha da Silveira MI, Ramos F. Detection, accumulation, distribution, and depletion of furaltadone and nifursol residues in poultry muscle, liver, and gizzard. J. Agric. Food Chem. 59(22), 11927–11934 (2011).Crossref, Medline, CAS, Google Scholar24 Lundborg CS, Tamhankar AJ. Antibiotic residues in the environment of south east Asia. BMJ. 358, j2440 (2017).Crossref, Medline, Google Scholar25 Singer AC, Shaw H, Rhodes V, Hart A. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front. Microbiol. 7, 1728 (2016).Crossref, Medline, Google Scholar26 Call DR, Matthews L, Subbiah M, Liu J. Do antibiotic residues in soils play a role in amplification and transmission of antibiotic resistant bacteria in cattle populations. Front. Microbiol. 4, 193 (2013).Crossref, Medline, Google Scholar27 Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI. Evolution of high-level resistance during low-level antibiotic exposure. Nat. Commun. 9, 1599 (2018).Crossref, Medline, Google Scholar28 Nhung N, Cuong N, Thwaites G, Carrique-Mas J. Antimicrobial usage and antimicrobial resistance in animal production in southeast Asia: a review. Antibiotics 5(4), 37 (2016).Crossref, Google Scholar29 Zellweger RM, Carrique-Mas J, Limmathurotsakul D, Day NPJ, Thwaites GE, Baker S. A current perspective on antimicrobial resistance in southeast Asia. J. Infect. Chemother. 72(11), 2963–2972 (2017).CAS, Google Scholar30 Abatcha MG, Effarizah ME, Rusul G. Prevalence, antimicrobial resistance, resistance genes and class 1 integrons of Salmonella serovars in leafy vegetables, chicken carcasses and related processing environments in Malaysian fresh food markets. Food Control 91, 170–180 (2018).Crossref, CAS, Google Scholar31 Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13(1), 42–51 (2015).Crossref, Medline, CAS, Google Scholar32 Lopes GV, Michael GB, Cardoso M, Schwarz S. Antimicrobial resistance and class 1 integron-associated gene cassettes in Salmonella enterica serovar Typhimurium isolated from pigs at slaughter and abattoir environment. Vet. Microbiol. 194, 84–92 (2016).Crossref, Medline, CAS, Google Scholar33 Glenn LM, Lindsey RL, Folster JP et al. Antimicrobial resistance genes in multidrug-resistant Salmonella enterica isolated from animals, retail meats, and humans in the United States and Canada. Microb. Drug Resist. 19(3), 175–184 (2013).Crossref, Medline, CAS, Google Scholar34 Doumith M, Godbole G, Ashton P et al. Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. J. Antimicrob. Chemother. 71(8), 2300–2305 (2016).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetailsCited ByImproving salmonellosis etioprophylaxis in calves using immunomodulators of various pharmacological classesIOP Conference Series: Earth and Environmental Science, Vol. 422, No. 1 Vol. 10, No. 21 Follow us on social media for the latest updates Metrics Downloaded 37 times History Received 13 June 2018 Accepted 12 October 2018 Published online 30 November 2018 Published in print November 2018 Information© 2018 Newlands PressKeywordsantimicrobial residuesfoodborne Salmonella spp.Financial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download
Referência(s)