Piecewise Polynomial Modeling for Control and Analysis of Aircraft Dynamics Beyond Stall
2018; American Institute of Aeronautics and Astronautics; Volume: 42; Issue: 4 Linguagem: Inglês
10.2514/1.g003618
ISSN1533-3884
AutoresTorbjørn Cunis, Laurent Burlion, Jean-Philippe Condomines,
Tópico(s)Real-time simulation and control systems
ResumoNo AccessEngineering NotesPiecewise Polynomial Modeling for Control and Analysis of Aircraft Dynamics Beyond StallTorbjørn Cunis, Laurent Burlion and Jean-Philippe CondominesTorbjørn CunisONERA–The French Aerospace Lab, 31055 Toulouse, France, Laurent BurlionONERA–The French Aerospace Lab, 31055 Toulouse, France and Jean-Philippe CondominesFrench Civil Aviation School, 31055 Toulouse, FrancePublished Online:20 Dec 2018https://doi.org/10.2514/1.G003618SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Goman M., Zagainov G. and Khramtsovsky A., "Application of Bifurcation Methods to Nonlinear Flight Dynamics Problems," Progress in Aerospace Sciences, Vol. 33, Nos. 9–10, 1997, pp. 539–586. doi:https://doi.org/10.1016/S0376-0421(97)00001-8 PAESD6 0376-0421 CrossrefGoogle Scholar[2] Gill S. J., Lowenberg M. H., Neild S. A., Krauskopf B., Puyou G. and Coetzee E., "Upset Dynamics of an Airliner Model: A Nonlinear Bifurcation Analysis," Journal of Aircraft, Vol. 50, No. 6, 2013, pp. 1832–1842. doi:https://doi.org/10.2514/1.C032221 LinkGoogle Scholar[3] Chang B.-C., Kwatny H. G., Ballouz E. R. and Hartmann D. C., "Aircraft Trim Recovery from Highly Nonlinear Upset Conditions," AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2016-0880, 2016. doi:https://doi.org/10.2514/6.2016-0880 LinkGoogle Scholar[4] Stepanyan V., Krishnakumar K., Kaneshige J. and Acosta D., "Stall Recovery Guidance Algorithms Based on Constrained Control Approaches," AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2016-0878, 2016. doi:https://doi.org/10.2514/6.2016-0878 LinkGoogle Scholar[5] Engelbrecht J. A. A., Pauck S. J. and Peddle I. K., "A Multi-Mode Upset Recovery Flight Control System for Large Transport Aircraft," AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2013-5172, 2013. doi:https://doi.org/10.2514/6.2013-5172 LinkGoogle Scholar[6] Crespo L. G., Kenny S. P., Cox D. E. and Murri D. G., "Analysis of Control Strategies for Aircraft Flight Upset Recovery," AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2012-5026, 2012. doi:https://doi.org/10.2514/6.2012-5026 LinkGoogle Scholar[7] Richards N. D., Gandhi N., Bateman A. J., Klyde D. H. and Lampton A. K., "Vehicle Upset Detection and Recovery for Onboard Guidance and Control," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 4, 2017, pp. 920–933. doi:https://doi.org/10.2514/1.G001738 JGCODS 0731-5090 LinkGoogle Scholar[8] Frink N. T., Murphy P. C., Atkins H. L., Viken S. A., Petrilli J. L., Gopalarathnam A. and Paul R. C., "Computational Aerodynamic Modeling Tools for Aircraft Loss of Control," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 4, 2017, pp. 789–803. doi:https://doi.org/10.2514/1.G001736 JGCODS 0731-5090 LinkGoogle Scholar[9] "Flight Dynamics Simulation of a Generic Transport Model," Software Package, Lengley Research Center LAR-17625-1, National Aeronautics and Space Administration, Hampton, VA, 2016, https://software.nasa.gov/software/LAR-17625-1 [retrieved 17 Nov. 2016]. Google Scholar[10] Kwatny H. G., Dongmo J.-E. T., Chang B.-C., Bajpai G., Yasar M. and Belcastro C., "Nonlinear Analysis of Aircraft Loss of Control," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 1, 2013, pp. 149–162. doi:https://doi.org/10.2514/1.56948 JGCODS 0731-5090 LinkGoogle Scholar[11] Chakraborty A., Seiler P. and Balas G. J., "Nonlinear Region of Attraction Analysis for Flight Control Verification and Validation," Control Engineering Practice, Vol. 19, No. 4, 2011, pp. 335–345. doi:https://doi.org/10.1016/j.conengprac.2010.12.001 COEPEL 0967-0661 CrossrefGoogle Scholar[12] Cunis T., Burlion L. and Condomines J.-P., "Piece-Wise Identification and Analysis of the Aerodynamic Coefficients, Trim Conditions, and Safe Sets of the Generic Transport Model," AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2018-1114, 2018. doi:https://doi.org/10.2514/6.2018-1114 Google Scholar[13] Bulka E. and Nahon M., "Autonomous Control of Agile Fixed-Wing UAVs Performing Aerobatic Maneuvers," 2017 International Conference on Unmanned Aircraft Systems, IEEE Publ., Piscataway, NJ, 2017, pp. 104–113. doi:https://doi.org/10.1109/ICUAS.2017.7991437 Google Scholar[14] Robison D. E., "Estimates for the Points of Intersection of Two Polynomial Regressions," Journal of the American Statistical Association, Vol. 59, No. 305, 1964, pp. 214–224. doi:https://doi.org/10.1080/01621459.1964.10480712 CrossrefGoogle Scholar[15] Gallant A. R. and Fuller W. A., "Fitting Segmented Polynomial Regression Models Whose Join Points Have to be Estimated," Journal of the American Statistical Association, Vol. 68, No. 341, 1973, pp. 144–147. doi:https://doi.org/10.1080/01621459.1973.10481353 CrossrefGoogle Scholar[16] McGee V. E. and Carleton W. T., "Piecewise Regression," Journal of the American Statistical Association, Vol. 65, No. 331, 1970, pp. 1109–1124. doi:https://doi.org/10.2307/2284278 CrossrefGoogle Scholar[17] Chaudhuri P., Huang M.-C., Loh W.-Y. and Yao R., "Piecewise-Polynomial Regression Trees," Statistica Sinica, Vol. 4, No. 1, 1994, pp. 143–167, http://www.jstor.org/stable/24305278 [retrieved 2018]. Google Scholar[18] de Visser C. C., Mulder J. A. and Chu Q. P., "A Multidimensional Spline-Based Global Nonlinear Aerodynamic Model for the Cessna Citation II," AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2010-7950, 2010. doi:https://doi.org/10.2514/6.2010-7950 LinkGoogle Scholar[19] Tol H. J., de Visser C. C., Sun L. G., van Kampen E. and Chu Q. P., "Multivariate Spline-Based Adaptive Control of High-Performance Aircraft with Aerodynamic Uncertainties," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 4, 2016, pp. 781–800. doi:https://doi.org/10.2514/1.G001079 JGCODS 0731-5090 LinkGoogle Scholar[20] de Visser C. C., Chu Q. P. and Mulder J. A., "A New Approach to Linear Regression with Multivariate Splines," Automatica, Vol. 45, No. 12, 2009, pp. 2903–2909. doi:https://doi.org/10.1016/j.automatica.2009.09.017 ATCAA9 0005-1098 CrossrefGoogle Scholar[21] Brandon J. M. and Morelli E. A., "Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data," Journal of Aircraft, Vol. 53, No. 5, 2016, pp. 1261–1297. doi:https://doi.org/10.2514/1.C033133 LinkGoogle Scholar[22] Cunis T., "The pwpfit Toolbox for Polynomial and Piece-Wise Polynomial Data Fitting," IFAC-PapersOnLine, Vo. 51, No. 15, 2018, pp. 682–687. doi:https://doi.org/10.1016/j.ifacol.2018.09.204 Google Scholar[23] Legendre A.-M., Sur la méthode des moindre quarrés, Appendix of Nouvelles méthodes pour la détermination des orbites des comètes, F. Didot, Paris, 1805. Google Scholar[24] Gauss C. F., Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium, Frid. Perthes & I.H. Besser, Hamburg, 1809. Google Scholar[25] Stigler S. M., "Gergonne's 1815 Paper on the Design and Analysis of Polynomial Regression Experiments," Historia Mathematica, Vol. 1, No. 4, 1974, pp. 431–439. doi:https://doi.org/10.1016/0315-0860(74)90033-0 HIMADS 0315-0860 CrossrefGoogle Scholar[26] Smith K., "On the Standard Deviations of Adjusted and Interpolated Values of an Observed Polynomial Function and its Constants and the Guidance They Give Towards a Proper Choice of the Distribution of Observations," Biometrika, Vol. 12, Nos. 1–2, 1918, pp. 1–85. doi:https://doi.org/10.2307/2331929 BIOKAX 0006-3444 CrossrefGoogle Scholar[27] "Flight Dynamics–Concepts, Quantities and Symbols–Part 1: Aircraft Motion Relative to the Air," 4th ed., International Organization for Standarization, Genève, CH, 1988. Google Scholar[28] Cunis T., Burlion L. and Condomines J.-P., "Piecewise Polynomial Model of the Aerodynamic Coefficients of the Generic Transport Model and its Equations of Motion," ONERA—The French Aerospace Lab, French Civil Aviation School, Technical Rept. HAL-01808649, Toulouse, FR, 2018, https://hal.archives-ouvertes.fr/hal-01808649. Google Scholar[29] Dankowicz H. and Schilder F., Recipes for Continuation, Computational Science and Engineering, Soc. for Industrial and Applied Mathematics, Philadelphia, PA, 2013, pp. 45–63. doi:https://doi.org/10.1137/1.9781611972573 CrossrefGoogle Scholar[30] Lygeros J., "On Reachability and Minimum Cost Optimal Control," Automatica, Vol. 40, No. 6, 2004, pp. 917–927. doi:https://doi.org/10.1016/j.automatica.2004.01.012 ATCAA9 0005-1098 CrossrefGoogle Scholar[31] Nabi H. N., Lombaerts T., Zhang Y., van Kampen E., Chu Q. P. and de Visser C. C., "Effects of Structural Failure on the Safe Flight Envelope of Aircraft," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 6, 2018, pp. 1257–1275. doi:https://doi.org/10.2514/1.G003184 JGCODS 0731-5090 LinkGoogle Scholar[32] Tedrake R., Manchester I. R., Tobenkin M. and Roberts J. W., "LQR-Trees: Feedback Motion Planning via Sums-of-Squares Verification," International Journal of Robotics Research, Vol. 29, No. 8, 2010, pp. 1038–1052. doi:https://doi.org/10.1177/0278364910369189 CrossrefGoogle Scholar[33] Johansson M. and Rantzer A., "Computation of Piecewise Quadratic Lyapunov Functions for Hybrid Systems," IEEE Transactions on Automatic Control, Vol. 43, No. 4, 1998, pp. 555–559. doi:https://doi.org/10.1109/9.664157 IETAA9 0018-9286 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byAdvanced Algorithms for Verification and Validation of Flexible Aircraft with Adaptive ControlDaniel Wagner , Didier Henrion and Martin Hromčík31 October 2022 | Journal of Guidance, Control, and Dynamics, Vol. 46, No. 3A Hybrid Polynomial Stall Model for the Longitudinal Dynamics of a UAVSpatiotemporal Dynamics and Factors Driving the Distributions of Pine Wilt Disease-Damaged Forests in China7 February 2022 | Forests, Vol. 13, No. 2Semi-parametric Regression based on Machine Learning Methods for UAS Stall IdentificationIFAC-PapersOnLine, Vol. 54, No. 7Piecewise Polynomial Model Identification using Constrained Least Squares for UAS StallIFAC-PapersOnLine, Vol. 54, No. 7Sum-of-Squares Flight Control Synthesis for Deep-Stall RecoveryTorbjørn Cunis, Jean-Philippe Condomines and Laurent Burlion30 April 2020 | Journal of Guidance, Control, and Dynamics, Vol. 43, No. 8Model-Predictive Spiral and Spin Upset Recovery Control for the Generic Transport Model Simulation⋆Local stability analysis for large polynomial spline systemsAutomatica, Vol. 113Dynamic Stability Analysis of Aircraft Flight in Deep StallTorbjørn Cunis, Jean-Philippe Condomines, Laurent Burlion and Anders la Cour-Harbo27 November 2019 | Journal of Aircraft, Vol. 57, No. 1Investigating Impaired Aircraft's Flight Envelope Variation Predictability Using Least-Squares Regression AnalysisRamin Norouzi, Amirreza Kosari and Mohammad Hossein Sabour15 October 2019 | Journal of Aerospace Information Systems, Vol. 17, No. 1 What's Popular Volume 42, Number 4April 2019 CrossmarkInformationCopyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAerospace SciencesAircraft Dynamic ModesAirspeedFlight DynamicsFlow RegimesFluid DynamicsSlip (Aerodynamics)Wind Tunnels KeywordsAircraft DynamicsElevator DeflectionAerodynamic Force CoefficientsAileronsFlight EnvelopeTurbulent FlowMATLABFault Detection and IsolationSix Degree of FreedomUnmanned AircraftAcknowledgmentThis work is funded by ONERA–The French Aerospace Lab.PDF Received2 February 2018Accepted9 October 2018Published online20 December 2018
Referência(s)