Artigo Produção Nacional Revisado por pares

Slow delivery of biocide from nanostructured, microscaled, particles reduces its phytoxicity: A model investigation

2019; Elsevier BV; Volume: 367; Linguagem: Inglês

10.1016/j.jhazmat.2018.12.117

ISSN

1873-3336

Autores

Bruno D. Mattos, Lucas Rafael da Silva, Irisdoris Rodrigues de Souza, Washington Luiz Esteves Magalhães, Daniela Morais Leme,

Tópico(s)

Pesticide and Herbicide Environmental Studies

Resumo

Nano-engineered delivery systems have emerged as possible solutions for more efficient pest management in agriculture. Likewise for nanostructured drug delivery systems (DDS) in medicine, the use of biocide delivery systems (BDS) brought concerns on their toxicology on non-targeted organisms. Plants, for instance, are the foundation of the ecosystem, acting as primary actor in the food chain and is associated with the whole biodiversity, being strictly related to human health. This is a very important consideration to fully understand the benefits of using delivery systems for crop protection and production. Herein, a biocide delivery system was prepared by loading nanostructured, microscaled, biogenic silica particles with thymol, a known phytotoxicant. The resulting system contains 120 mg of thymol per gram of silica and displays slow release features. The Allium cepa bioassay was chosen to demonstrate how the toxicity and cellular damages induced by thymol can be significantly reduced through a slow, controlled, release strategy. The lower mobility of the reference particles associated with slow-delivery features reduced the toxicity and cellular damages caused by thymol in the plant genetic model.

Referência(s)