Artigo Acesso aberto Produção Nacional Revisado por pares

A macroecological approach to evolutionary rescue and adaptation to climate change

2019; Wiley; Volume: 42; Issue: 6 Linguagem: Inglês

10.1111/ecog.04264

ISSN

1600-0587

Autores

José Alexandre Felizola Diniz‐Filho, Kelly da Silva e Souza, Luis Maurício Bini, Rafael Loyola, Ricardo Dobrovolski, João Fabrício Mota Rodrigues, S. Lima‐Ribeiro, Levi Carina Terribile, Thiago F. Rangel, Igor Lucien Bione Dardenne Barbosa, Roniel Freitas, Iberê Farina Machado, Tainá Rocha, Maria Lúcia Lorini, Mariana M. Vale, Carlos A. Navas, Natan Medeiros Maciel, Fabricio Villalobos, Miguel Á. Olalla‐Tárraga, Sidney F. Gouveia,

Tópico(s)

Animal Behavior and Reproduction

Resumo

Despite the widespread use of ecological niche models (ENMs) for predicting the responses of species to climate change, these models do not explicitly incorporate any population‐level mechanism. On the other hand, mechanistic models adding population processes (e.g. biotic interactions, dispersal and adaptive potential to abiotic conditions) are much more complex and difficult to parameterize, especially if the goal is to predict range shifts for many species simultaneously. In particular, the adaptive potential (based on genetic adaptations, phenotypic plasticity and behavioral adjustments for physiological responses) of local populations has been a less studied mechanism affecting species’ responses to climatic change so far. Here, we discuss and apply an alternative macroecological framework to evaluate the potential role of evolutionary rescue under climate change based on ENMs. We begin by reviewing eco‐evolutionary models that evaluate the maximum sustainable evolutionary rate under a scenario of environmental change, showing how they can be used to understand the impact of temperature change on a Neotropical anuran species, the Schneider's toad Rhinella diptycha . Then we show how to evaluate spatial patterns of species’ geographic range shift using such models, by estimating evolutionary rates at the trailing edge of species distribution estimated by ENMs and by recalculating the relative amount of total range loss under climate change. We show how different models can reduce the expected range loss predicted for the studied species by potential ecophysiological adaptations in some regions of the trailing edge predicted by ENMs. For general applications, we believe that parameters for large numbers of species and populations can be obtained from macroecological generalizations (e.g. allometric equations and ecogeographical rules), so our framework coupling ENMs with eco‐evolutionary models can be applied to achieve a more accurate picture of potential impacts from climate change and other threats to biodiversity.

Referência(s)
Altmetric
PlumX