Solar-Sail Trajectory Design to Planetary Pole Sitters
2019; American Institute of Aeronautics and Astronautics; Volume: 42; Issue: 6 Linguagem: Inglês
10.2514/1.g003952
ISSN1533-3884
AutoresMerel Vergaaij, Jeannette Heiligers,
Tópico(s)Space Satellite Systems and Control
ResumoNo AccessEngineering NotesSolar-Sail Trajectory Design to Planetary Pole SittersMerel Vergaaij and Jeannette HeiligersMerel VergaaijDelft University of Technology, 2629 HS Delft, The Netherlands and Jeannette HeiligersDelft University of Technology, 2629 HS Delft, The NetherlandsPublished Online:11 Feb 2019https://doi.org/10.2514/1.G003952SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] McInnes C. R., Solar Sailing: Technology, Dynamics and Mission Applications, Springer-Praxis Series in Space Science and Technology, Springer, Berlin, 1999, pp. 3, 34–50, 112–170. doi:https://doi.org/10.1007/978-1-4471-3992-8_1 CrossrefGoogle Scholar[2] Tsuda Y., Mori O., Funase R., Sawada H., Yamamoto T., Saiki T., Endo T. and Kawaguchi J., "Flight Status of IKAROS Deep Space Solar Sail Demonstrator," Acta Astronautica, Vol. 69, Nos. 9–10, 2011, pp. 833–840. doi:https://doi.org/10.1016/j.actaastro.2011.06.005 AASTCF 0094-5765 CrossrefGoogle Scholar[3] Johnson L., Whorton M., Heaton A., Pinson R., Laue G. and Adams C., "NanoSail-D: A Solar Sail Demonstration Mission," Acta Astronautica, Vol. 68, Nos. 5–6, 2011, pp. 571–575. doi:https://doi.org/10.1016/j.actaastro.2010.02.008 AASTCF 0094-5765 CrossrefGoogle Scholar[4] Biddy C. and Svitek T., "LightSail-1 Solar Sail Design and Qualification," Proceedings of the 41st Aerospace Mechanisms Symposium, NASA CP-2012-217653, Hanover, MD, May 2012, pp. 451–464. Google Scholar[5] McKay R. J., Macdonald M., Biggs J. and McInnes C. R., "Survey of Highly-Non-Keplerian Orbits with Low-Thrust Propulsion," Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, 2011, pp. 645–666. doi:https://doi.org/10.2514/1.52133 LinkGoogle Scholar[6] Heiligers J., Macdonald M. and Parker J. S., "Extension of Earth-Moon Libration Point Orbits with Solar Sail Propulsion," Astrophysics and Space Science, Vol. 361, No. 7, 2016. doi:https://doi.org/10.1007/s10509-016-2783-3 APSSBE 0004-640X CrossrefGoogle Scholar[7] Heiligers J., Hiddink S., Noomen R. and McInnes C. R., "Solar Sail Lyapunov and Halo Orbits in the Earth–Moon Three-Body Problem," Acta Astronautica, Vol. 116, Nov.–Dec. 2015, pp. 25–35. doi:https://doi.org/10.1016/j.actaastro.2015.05.034 AASTCF 0094-5765 CrossrefGoogle Scholar[8] Ceriotti M., Diedrich B. L. and McInnes C. R., "Novel Mission Concepts for Polar Coverage: An Overview of Recent Developments and Possible Future Applications," Acta Astronautica, Vol. 80, Nov.–Dec. 2012, pp. 89–104. doi:https://doi.org/10.1016/j.actaastro.2012.04.043 AASTCF 0094-5765 CrossrefGoogle Scholar[9] Macdonald M. and McInnes C., "Solar Sail Science Mission Applications and Advancement," Advances in Space Research, Vol. 48, No. 11, Dec. 2011, pp. 1702–1716. doi:https://doi.org/10.1016/j.asr.2011.03.018 CrossrefGoogle Scholar[10] Heiligers J., Diedrich B., Derbes B. and McInnes C. R., "Sunjammer: Preliminary End-to-End Mission Design," AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2014-4127, Aug. 2014. doi:https://doi.org/10.2514/6.2014-4127 LinkGoogle Scholar[11] Heiligers J. and McInnes C. R., "Novel Solar Sail Mission Concepts for Space Weather Forecasting," 24th AAS/AIAA Space Flight Mechanics Meeting, Univelt Inc., San Diego, CA, 2014, pp. 585–604. Google Scholar[12] McInnes C., Bothmer V., Dachwald B., Geppert U., Heiligers J., Hilgers A., Johnson L., Macdonald M., Reinhard R., Seboldt W. and et al., Advances in Solar Sailing, Springer, Berlin, 2014, pp. 227–242. doi:https://doi.org/10.1007/978-3-642-34907-2_16 CrossrefGoogle Scholar[13] Macdonald M., Hughes G., McInnes C., Lyngvi A., Falkner P. and Atzei A., "Solar Polar Orbiter: A Solar Sail Technology Reference Study," Journal of Spacecraft and Rockets, Vol. 43, No. 5, 2006, pp. 960–972. doi:https://doi.org/10.2514/1.16408 JSCRAG 0022-4650 LinkGoogle Scholar[14] Ceriotti M., Heiligers J. and McInnes C. R., "Trajectory and Spacecraft Design for a Pole-Sitter Mission," Journal of Spacecraft and Rockets, Vol. 51, No. 1, 2014, pp. 311–326. doi:https://doi.org/10.2514/1.A32477 JSCRAG 0022-4650 LinkGoogle Scholar[15] Heiligers J., Van Den Oever T. D., Ceriotti M., Mulligan P. and McInnes C. R., "Continuous Planetary Polar Observation from Hybrid Pole-Sitters at Venus, Earth, and Mars," Fourth International Symposium on Solar Sailing (ISSS 2017), Japan Space Forum, Jan. 2017, Paper 17077. Google Scholar[16] McInnes C. R. and Mulligan P., "Final Report: Telecommunications and Earth Observations Applications for Polar Stationary Solar Sails," National Oceanic and Atmospheric Administration, Department of Aerospace Engineering, Univ. of Glasgow, Glasgow, United Kingdom, Jan. 2003. Google Scholar[17] Ceriotti M. and McInnes C. R., "Generation of Optimal Trajectories for Earth Hybrid Pole Sitters," Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, 2011, pp. 847–859. doi:https://doi.org/10.2514/1.50935 JGCODS 0731-5090 LinkGoogle Scholar[18] Ceriotti M. and McInnes C. R., "Hybrid Solar Sail and Solar Electric Propulsion for Novel Earth Observation Missions," Acta Astronautica, Vol. 69, Nos. 9–10, 2011, pp. 809–821. doi:https://doi.org/10.1016/j.actaastro.2011.06.007 AASTCF 0094-5765 CrossrefGoogle Scholar[19] Walmsley M., Heiligers J., Ceriotti M. and McInnes C. R., "Optimal Trajectories for Planetary Pole-Sitter Missions," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 10, 2016, pp. 2461–2468. doi:https://doi.org/10.2514/1.G000465 LinkGoogle Scholar[20] Heiligers J., Ceriotti M., McInnes C. R. and Biggs J. D., "Design of Optimal Earth Pole-Sitter Transfers Using Low-Thrust Propulsion," Acta Astronautica, Vol. 79, Oct.–Nov. 2012, pp. 253–268. doi:https://doi.org/10.1016/j.actaastro.2012.04.025 AASTCF 0094-5765 CrossrefGoogle Scholar[21] Mingotti G., Heiligers J. and McInnes C. R., "First-Guess Generation of Solar Sail Interplanetary Heteroclinic Connections," 2nd IAA Conference on Dynamics and Control of Space Systems, Univelt Inc., Paper IAA-AAS-DyCoSS2-03-04, San Diego, CA, 2014, pp. 1633–1652. Google Scholar[22] Vergaaij M. and Heiligers J., "Time-Optimal Solar Sail Heteroclinic-like Connections for an Earth-Mars Cycler," Acta Astronautica, Vol. 152, Elsevier BV, 2018, pp. 474–485. doi:https://doi.org/10.1016/j.actaastro.2018.08.008 AASTCF 0094-5765 CrossrefGoogle Scholar[23] Hughes G. W. and McInnes C. R., "Solar Sail Hybrid Trajectory Optimization for Non-Keplerian Orbit Transfers," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 3, 2002, pp. 602–604. doi:https://doi.org/10.2514/2.4924 JGCODS 0731-5090 LinkGoogle Scholar[24] Becerra V. M., "Solving Complex Optimal Control Problem at No Cost with PSOPT," IEEE International Symposium on Computer-Aided Control System Design, IEEE, New York, Sept. 2010, pp. 1391–1396. doi:https://doi.org/10.1109/CACSD.2010.5612676 Google Scholar[25] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, rev. ed., AIAA Education Series, AIAA, Reston, VA, 1999, pp. 371–381. doi:https://doi.org/10.2514/4.861543 Google Scholar[26] Szebehely V., Theory of Orbits: The Restricted Problem of Three Bodies, Academic Press, New York, 1967, pp. 7–41. CrossrefGoogle Scholar[27] Baig S. and McInnes C. R., "Artificial Three-Body Equilibria for Hybrid Low-Thrust Propulsion," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1644–1655. doi:https://doi.org/10.2514/1.36125 JGCODS 0731-5090 LinkGoogle Scholar[28] Dachwald B., Mengali G., Quarta A. and Macdonald M., "Parametric Model and Optimal Control of Solar Sails with Optical Degradation," Journal of Guidance, Control, and Dynamics, Vol. 29, No. 5, 2006, pp. 1170–1178. doi:https://doi.org/10.2514/1.20313 JGCODS 0731-5090 LinkGoogle Scholar[29] Ceriotti M. and McInnes C. R., "Systems Design of a Hybrid Sail Pole-Sitter," Advances in Space Research, Vol. 48, No. 11, 2011, pp. 1754–1762. doi:https://doi.org/10.1016/j.asr.2011.02.010 ASRSDW 0273-1177 CrossrefGoogle Scholar[30] Heaton A., Ahmad N. and Miller K., "Near Earth Asteroid Scout Solar Sail Thrust and Torque Model," 4th International Symposium on Solar Sailing (ISSS 2017), Japan Space Forum, 2017, Paper 17055. Google Scholar[31] Scheeres D. J., Orbital Motion in Strongly Perturbed Environments, Springer, Berlin, 2012, p. 54. doi:https://doi.org/10.1007/978-3-642-03256-1 CrossrefGoogle Scholar[32] Perez E., Ariane V User's Manual, Revision 1, No. 5, July 2011. Google Scholar[33] Bate R., Mueller D. and White J., Fundamentals of Astrodynamics, Dover Publ., Inc., New York, 1971, p. 72. Google Scholar[34] Wächter A. and Biegler L., "On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming," Mathematical Programming, Vol. 106, No. 1, 2006, pp. 25–57. doi:https://doi.org/10.1007/s10107-004-0559-y MHPGA4 1436-4646 CrossrefGoogle Scholar[35] Cage P., Kroo I. and Braun R., "Interplanetary Trajectory Optimization Using a Genetic Algorithm," Astrodynamics Conference, AIAA Paper 1994-3773, Aug. 1994. doi:https://doi.org/10.2514/6.1994-3773 LinkGoogle Scholar[36] Rao A., "A Survey of Numerical Methods for Optimal Control," Advances in the Astronautical Sciences, Vol. 135, No. 1, 2009, pp. 4. doi:https://doi.org/10.1.1.661.6337 Google Scholar[37] Rauwolf G. A. and Coverstone-Carroll V. L., "Near-Optimal Low-Thrust Orbit Transfers Generated by a Genetic Algorithm," Journal of Spacecraft and Rockets, Vol. 33, No. 6, 1996, pp. 859–862. doi:https://doi.org/10.2514/3.26850 JSCRAG 0022-4650 LinkGoogle Scholar[38] Wall B. and Conway B. A., "Near-Optimal Low-Thrust Earth-Mars Trajectories via a Genetic Algorithm," Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 1027–1031. doi:https://doi.org/10.2514/1.11891 JGCODS 0731-5090 LinkGoogle Scholar[39] Williams S., Hartmann J. and Coverstone-Carroll V., "Optimal Interplanetary Spacecraft Trajectories via a Pareto Genetic Algorithm," Spaceflight Mechanics, Vol. 99, AAS Paper 98-202, Monterey, CA, 1998. Google Scholar[40] Coverstone-Carroll V., Hartmann J. and Mason W., "Optimal Multi-Objective Low-Thrust Spacecraft Trajectories," Computer Methods in Applied Mechanics and Engineering, Vol. 186, Nos. 2–4, 2000, pp. 387–402. doi:https://doi.org/10.1016/S0045-7825(99)00393-X CMMECC 0045-7825 CrossrefGoogle Scholar[41] Dachwald B., "Evolutionary Neurocontrol: A Smart Method for Global Optimization of Low-Thrust Trajectories," Collection of Technical Papers: AIAA/AAS Astrodynamics Specialist Conference, Vol. 3, AIAA, Reston, VA, 2004, pp. 1705–1720. doi:https://doi.org/10.2514/6.2004-5405 Google Scholar[42] Heiligers J., Mingotti G. and McInnes C. R., "Optimal Solar Sail Transfers Between Halo Orbits of Different Sun-Planet Systems," Advances in Space Research, Vol. 55, No. 5, 2015, pp. 1405–1421. doi:https://doi.org/10.1016/j.asr.2014.11.033 ASRSDW 0273-1177 CrossrefGoogle Scholar[43] Mengali G. and Quarta A. A., "Solar Sail Trajectories with Piecewise-Constant Steering Laws," Aerospace Science and Technology, Vol. 13, No. 8, 2009, pp. 431–441. doi:https://doi.org/10.1016/j.ast.2009.06.007 CrossrefGoogle Scholar[44] Heiligers J., Mingotti G. and McInnes C. R., "Optimisation of Solar Sail Interplanetary Heteroclinic Connections," 2nd Conference on Dynamics and Control of Space Systems, Univelt Inc. Paper IAA-AAS-DyCoSS2-14-03-04, San Diego, CA, 2014, pp. 211–230. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byCircumnavigating the sun with diffractive solar sailsActa Astronautica, Vol. 187Characterizing Minimum-Time Solar Sail Geostationary Orbit Transfers Using Pseudospectral Optimal ControlRiley M. Fitzgerald 29 March 2021 | Journal of Spacecraft and Rockets, Vol. 58, No. 4Photon-Sail Equilibria in the Alpha Centauri SystemJeannette Heiligers, Frederic Schoutetens and Bernd Dachwald 8 March 2021 | Journal of Guidance, Control, and Dynamics, Vol. 44, No. 5End-to-end trajectory design for a solar-sail-only pole-sitter at Venus, Earth, and MarsAdvances in Space Research, Vol. 67, No. 9Economic assessment of high-thrust and solar-sail propulsion for near-earth asteroid miningAdvances in Space Research, Vol. 67, No. 9 What's Popular Volume 42, Number 6June 2019 CrossmarkInformationCopyright © 2019 by Merel Vergaaij and Jeannette Heiligers. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAstronomyCelestial Coordinate SystemCelestial MechanicsKepler's Laws of Planetary MotionPlanetary Science and ExplorationPlanetsSolar PhysicsSpace AgenciesSpace MissionsSpace Science and Technology KeywordsSolar Electric PropulsionEarthGeostationary Transfer OrbitGenetic AlgorithmLinkagesPerigeePseudospectral Optimal ControlPropellantEclipticNonlinear ProgrammingAcknowledgmentsThe authors would like to thank Matteo Ceriotti from the University of Glasgow, Scotland, U.K., for his constructive input on a previous version of this paper. Jeannette Heiligers also acknowledges support from the Marie Skłodowska-Curie Individual Fellowship 658645 (Solar Sailing for Space Situational Awareness in the Lunar System).PDF Received6 July 2018Accepted18 December 2018Published online11 February 2019
Referência(s)