Artigo Revisado por pares

Detumbling a Non-Cooperative Space Target with Model Uncertainties Using a Space Manipulator

2019; American Institute of Aeronautics and Astronautics; Volume: 42; Issue: 4 Linguagem: Inglês

10.2514/1.g003111

ISSN

1533-3884

Autores

Rabindra A. Gangapersaud, Guangjun Liu, Anton de Ruiter,

Tópico(s)

Teleoperation and Haptic Systems

Resumo

No AccessEngineering NotesDetumbling a Non-Cooperative Space Target with Model Uncertainties Using a Space ManipulatorRabindra A. Gangapersaud, Guangjun Liu and Anton H. J. de RuiterRabindra A. GangapersaudRyerson University, Toronto, Ontario M5B 2K3, Canada, Guangjun LiuRyerson University, Toronto, Ontario M5B 2K3, Canada and Anton H. J. de RuiterRyerson University, Toronto, Ontario M5B 2K3, CanadaPublished Online:29 Jan 2019https://doi.org/10.2514/1.G003111SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Aghili F., "A Prediction and Motion-Planning Scheme for Visually Guided Robotic Capturing of Free-Floating Tumbling Objects with Uncertain Dynamics," IEEE Transaction on Robotics and Automation, Vol. 28, No. 3, 2012, pp. 634–649. doi:https://doi.org/10.1109/TRO.2011.2179581 CrossrefGoogle Scholar[2] Hirzinger G., Landzettel K., Brunner B., Fischer M., Preusche C., Reintsema D., Albu-Schäffer A., Schreiber G. and Steinmetz B., "DLR's Robotics Technologies for on-Orbit Servicing," Advanced Robotics, Vol. 18, No. 2, 2012, pp. 139–174. doi:https://doi.org/10.1163/156855304322758006 ADROEI 0169-1864 CrossrefGoogle Scholar[3] Abiko S. and Hirzinger G., "On-Line Parameter Adaptation for a Momentum Control in the Post-Grasping of a Tumbling Target with Model Uncertainty," Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE Publ., Piscataway, NJ, 2007, pp. 847–852. doi:https://doi.org/10.1109/IROS.2007.4399190 Google Scholar[4] Aghili F., "Optimal Control for Robotic Capturing and Passivation of a Tumbling Satellite with Unknown Dynamics," AIAA Guidance, Navigation and Control Conference, AIAA Paper 2006-7274, 2006. doi:https://doi.org/10.2514/6.2008-7274 Google Scholar[5] Yoshida K., "Engineering Test Satellite VII Flight Experiment for Space Robot Dynamics and Control Theories on Laboratory Test Beds Ten Years Ago, not in Orbit," International Journal of Robotics Research, Vol. 22, No. 5, 2003, pp. 321–335. doi:https://doi.org/10.1177/0278364903022005003 IJRREL 0278-3649 CrossrefGoogle Scholar[6] Nguyen-Huynh T. and Sharf I., "Adaptive Reactionless Motion and Parameter Identification in Postcapture of Space Debris," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 404–414. doi:https://doi.org/10.2514/1.57856 JGCODS 0731-5090 LinkGoogle Scholar[7] Aghili F., "Optimal Control of a Space Manipulator for Detumbling of a Target Satellite," Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, 2009, pp. 3019–3024. doi:https://doi.org/10.1109/ROBOT.2009.5152235 Google Scholar[8] Aghili F., "Pre and Post-Grasping Robot Motion Planning to Capture and Stabilize a Tumbling/Drifting Free-Floater with Uncertain Dynamics," Proceedings of IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, 2013, pp. 5461–5468. doi:https://doi.org/10.1109/ICRA.2013.6631360 Google Scholar[9] Oki T., Abiko S., Nakanishi H. and Yoshida K., "Time-Optimal Detumbling Maneuver Along an Arbitrary Arm Motion During the Capture of a Target Satellite," Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE Publ., Piscataway, NJ, 2011, pp. 625–630. doi:https://doi.org/10.1109/IROS.2011.6095159 Google Scholar[10] Wang M., Luo J., Yuan J. and Walter U., "Detumbling Control for Kinematically Redundant Space Manipulator Post-Grasping a Rotational Satellite," Acta Astronautica, Vol. 141, Dec. 2017, pp. 98–109. doi:https://doi.org/10.1016/j.actaastro.2017.09.025 AASTCF 0094-5765 CrossrefGoogle Scholar[11] Wang M., Luo J., Yuan J. and Walter U., "An Integrated Control Scheme for Space Robot After Capturing Non-Cooperative Target," Acta Astronautica, Vol. 147, June 2018, pp. 350–363. doi:https://doi.org/10.1016/j.actaastro.2018.04.016 AASTCF 0094-5765 CrossrefGoogle Scholar[12] Dimitrov D. and Yoshida Y., "Momentum Distribution in a Space Manipulator for Facilitating the Post-Impact Control," Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE Publ., Piscataway, NJ, 2004, pp. 3345–3350. doi:https://doi.org/10.1109/IROS.2004.1389933 Google Scholar[13] Yoshida Y. and Dimitrov D., "On the Capture of Tumbling Satellite by a Space Robot," Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE Publ., Piscataway, NJ, 2006, pp. 4127–4132. doi:https://doi.org/10.1109/IROS.2006.281900 Google Scholar[14] Aghili F. and Parsa K., "Motion and Parameter Estimation of Space Object Using Laser-Vision Data," Journal of Guidance, Control, and Dynamics, Vol. 32, No. 2, 2009, pp. 538–550. doi:https://doi.org/10.2514/1.37129 JGCODS 0731-5090 LinkGoogle Scholar[15] Murotsu Y., Senda K., Ozaki M. and Tsujio S., "Parameter Identification of Unknown Object Handled by Free Flying Space Robot," Journal of Guidance, Control, and Dynamics, Vol. 17, No. 3, 1994, pp. 488–494. doi:https://doi.org/10.2514/3.21225 JGCODS 0731-5090 LinkGoogle Scholar[16] Ma O., Dang H. and Pham K., "On-Orbit Identification of Inertia Properties of Spacecraft Using a Robotic Arm," Journal of Guidance Control and Dynamics, Vol. 31, No. 6, 2008, pp. 1761–1771. doi:https://doi.org/10.2514/1.35188 LinkGoogle Scholar[17] Zhang B., Liang B., Wang Z., Mi Y., Zhang Y. and Chen Z., "Coordinated Stabilization for Space Robot After Capturing a Noncooperative Target with Large Inertia," Acta Astronautica, Vol. 134, May 2017, pp. 75–84. doi:https://doi.org/10.1016/j.actaastro.2017.01.041 AASTCF 0094-5765 CrossrefGoogle Scholar[18] Abiko S., Lampariello R. and Hirzinger G., "Impedance Control for a Free-Floating Robot in the Grasping of a Tumbling Target with Parameter Uncertainty," Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE Publ., Piscataway, NJ, 2006, pp. 1020–1025. doi:https://doi.org/10.1109/IROS.2006.281785 Google Scholar[19] Papadopoulos E., "On the Dynamics and Control of Space Manipulators," Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1990. Google Scholar[20] Xu Y. and Kanade T., (eds.), Space Robotics: Dynamics and Control, Springer, Norwell, MA, 1993, pp. 165–204. doi:https://doi.org/10.1007/978-1-4615-3588-1 CrossrefGoogle Scholar[21] Volpe R. and Khosla P., "An Experimental Evaluation and Comparison of Explicit Force Control Strategies for Robotic Manipulators," Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, 1992, pp. 1387–1393. doi:https://doi.org/10.1109/ROBOT.1992.220156 Google Scholar[22] Magrini E., Flacco F. and Luca A. D., "Control of Generalized Contact Motion and Force in Physical Human Robot Interaction," Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, 2015, pp. 2298–2304. doi:https://doi.org/10.1109/ICRA.2015.7139504 Google Scholar[23] Yuan J. S., "Closed-Loop Manipulator Control Using Quaternion Feedback," IEEE Journal on Robotics and Automation, Vol. 4, No. 4, 1988, pp. 434–440. doi:https://doi.org/10.1109/56.809 CrossrefGoogle Scholar[24] Anderson R. and Spong M., "Asymptotic Stability for Force Reflecting Teleoperators with Time Delay," The International Journal of Robotics Research, Vol. 11, No. 2, 1991, pp. 135–149. doi:https://doi.org/10.1177/027836499201100204 CrossrefGoogle Scholar[25] Zou A., Kumar K. and de Ruiter A., "Robust Attitude Tracking Control of Spacecraft Under Control Input Magnitude and Rate Saturations," International Journal of Robust and Nonlinear Control, Vol. 26, No. 4, 2016, pp. 799–815. doi:https://doi.org/10.1002/rnc.v26.4 CrossrefGoogle Scholar[26] Mehrholz D., Leushacke L., Flury W., Jehn R., Klinkrad H. and Landgraf M., "Detecting Tracking and Imaging Space Debris," ESA Bulletin, Vol. 109, Feb. 2002, pp. 128–134. ESABD8 0376-4265 Google Scholar[27] Crecós L., Stefanescu R., Medina A., Benvenuto R., Lavagna M., González I., Rodríguez N. and Wormnes K., "Validation of a Net Active Debris Removal Simulator Within Parabolic Flight Experiment," Proceedings of the 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS, Canadian Space Agency (CSA-ASC), German Aerospace Agengy (DLR), European Space Agency (ESA), Japanese Aerospace eXploration Agency (JAXA), National Aeronautics and Space Administration (NASA), 2014, pp. 2298–2304. Google Scholar[28] Ellery A., Kreisel J. and Sommer B., "The Case for Robotic on-Orbit Servicing of Spacecraft: Spacecraft Reliability Is a Myth," Acta Astronaut, Vol. 63, Nos. 5–6, 2008, pp. 632–648. doi:https://doi.org/10.1016/j.actaastro.2008.01.042 AASTCF 0094-5765 CrossrefGoogle Scholar[29] Nechev D. and Yoshida K., "Impact Analysis and Post-Impact Control Issues of a Free Floating Space Robot Subject to a Force Impulse," IEEE Transaction on Robotics and Automation, Vol. 15, No. 3, 1999, pp. 548–557. doi:https://doi.org/10.1109/70.768186 CrossrefGoogle Scholar[30] MATLAB and SimMechanics Toolbox Release 2016a, The MathWorks, Inc., Natick, Massachusetts, 2016. Google Scholar[31] Xavier C. and Gilber J., "Postcapture Dynamics of a Spacecraft-Manipulator-Payload System," Journal of Guidance, Control, and Dynamics, Vol. 23, No. 1, 2000, pp. 95–100. doi:https://doi.org/10.2514/2.4491 JGCODS 0731-5090 LinkGoogle Scholar[32] Yoshida K., "The SpaceDyn: A MATLAB Toolbox for Space and Mobile Robots," Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE Publ., Piscataway, NJ, 1999, pp. 1633–1638. doi:https://doi.org/10.1109/IROS.1999.811712 Google Scholar[33] Kawano I., Mokuno M., Kasai T. and Suzuki T., "First Autonomous Rendezvous Using Relative GPS Navigation by ETS-VII," Journal of the Institute of Navigation, Vol. 48, No. 1, 2001, pp. 49–56. doi:https://doi.org/10.1002/navi.2001.48.issue-1 CrossrefGoogle Scholar[34] Rekleitis I., Martin E., Roulean G., L'Archevêque R., Parsa K. and Dupuis E., "Autonomous Capture of a Tumbling Satellite," Journal of Field Robotics, Vol. 24, No. 4, 2007, pp. 275–296. doi:https://doi.org/10.1002/(ISSN)1556-4967 CrossrefGoogle Scholar[35] Virgili B. B., Lemmens S. and Krag H., "Investigation on Envisat Attitude Motion," Investigation on Envisat Attitude Motion, ESA/ESOC, 2014. Google Scholar[36] Shan M., Guo J. and Gill E., "Review and Comparison of Active Space Debris Capturing and Removal Methods," Progress in Aerospace Sciences, Vol. 80, Jan. 2016, pp. 18–32. doi:https://doi.org/10.1016/j.paerosci.2015.11.001 PAESD6 0376-0421 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byTwo-Stage Trajectory Planning for Autonomous Deployment and Target Capture of Space ManipulatorsYuanqing Liu , Xiaofeng Liu, Guoping Cai, Feng Xu and Shengyong Tang21 February 2023 | Journal of Guidance, Control, and Dynamics, Vol. 0, No. 0Koopman-Operator-Based Attitude Dynamics and Control on SO(3)18 September 2022Review of On-Orbit Robotic Arm Active Debris Capture Removal Methods23 December 2022 | Aerospace, Vol. 10, No. 1Laboratory Experimentation of Spacecraft Robotic Capture Using Deep-Reinforcement-Learning–Based GuidanceKirk Hovell and Steve Ulrich12 September 2022 | Journal of Guidance, Control, and Dynamics, Vol. 45, No. 11Detumbling a Flexible Tumbling Target Using a Space Robot in Post-capture Phase12 July 2022 | The Journal of the Astronautical Sciences, Vol. 69, No. 4Conceptual analysis for a technology demonstration mission of the ion beam shepherds29 July 2022 | CEAS Space Journal, Vol. 42Non-Cooperative Space Target De-Tumbling Approach Using Multiple High-Temperature Superconducting CoilsWenya Wan, Chong Sun , Zixuan Zheng and Jianping Yuan17 April 2022 | Journal of Guidance, Control, and Dynamics, Vol. 45, No. 7Design of an Integrated Platform for Active Debris Removal25 June 2022 | Aerospace, Vol. 9, No. 7A Detumbling Strategy for an Orbital Manipulator in the Post-Grasp PhaseDetumbling a Non-Cooperative Tumbling Target Using a Low-Thrust DeviceYuanqing Liu, Xiaofeng Liu, Guoping Cai, Feng Xu and Shengyong Tang11 January 2022 | AIAA Journal, Vol. 60, No. 5Robust control of a space robot based on an optimized adaptive variable structure control methodAerospace Science and Technology, Vol. 120Control of an Orbital Manipulator with Reaction Wheels for On-orbit ServicingIFAC-PapersOnLine, Vol. 55, No. 38Robotic Manipulation and Capture in Space: A Survey19 July 2021 | Frontiers in Robotics and AI, Vol. 8Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase22 December 2020 | Multibody System Dynamics, Vol. 52, No. 3Optimal detumbling trajectory generation and coordinated control after space manipulator capturing tumbling targetsAerospace Science and Technology, Vol. 112Inertial parameter estimation and control of non-cooperative target with unilateral contact constraintChinese Journal of Aeronautics, Vol. 34, No. 3Robust coordination control of a space manipulator to detumble a non-cooperative targetActa Astronautica, Vol. 179PD-Impedance Combined Control Strategy for Capture Operations Using a 3-DOF Space Manipulator with a Compliant End-Effector25 November 2020 | Sensors, Vol. 20, No. 23Koopman-Operator-Based Attitude Dynamics and Control on SO(3)Ti Chen and Jinjun Shan2 September 2020 | Journal of Guidance, Control, and Dynamics, Vol. 43, No. 11Pneumatic Attitude Control of the Air Bearing Tesbed to Simulate the Three Axis Free Tumbling Motion of an Uncooperative Target What's Popular Volume 42, Number 4April 2019 CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsAttitude ControlComputer Programming and LanguageComputing and InformaticsComputing, Information, and CommunicationManipulatorsRobot ControlRoboticsRobotsSpace DebrisSpace ManipulatorSpace OrbitSpacecraft Attitude Control KeywordsSpace ManipulatorReaction WheelsSatellite FormationKinetic EnergySpace DebrisQuaternionsNumerical SimulationClosed LoopAttitude ControlSpace RobotAcknowledgmentThis work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC).PDF Received5 June 2017Accepted18 December 2018Published online29 January 2019

Referência(s)