Artigo Acesso aberto Revisado por pares

Energy-Saving Capture at Mars via Backward-Stable Orbits

2019; American Institute of Aeronautics and Astronautics; Volume: 42; Issue: 5 Linguagem: Inglês

10.2514/1.g004006

ISSN

1533-3884

Autores

Xiangyu Li, Dong Qiao, Malcolm Macdonald,

Tópico(s)

Space Satellite Systems and Control

Resumo

No AccessEngineering NotesEnergy-Saving Capture at Mars via Backward-Stable OrbitsXiangyu Li, Dong Qiao and Malcolm MacdonaldXiangyu LiBeijing Institute of Technology, 100081 Beijing, People's Republic of China, Dong QiaoBeijing Institute of Technology, 100081 Beijing, People's Republic of China and Malcolm MacdonaldUniversity of Strathclyde, Glasgow, Scotland G1 1XJ, United KingdomPublished Online:19 Feb 2019https://doi.org/10.2514/1.G004006SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Belbruno E. A. and Miller J. K., "Sun-Perturbed Earth-to-Moon Transfers with Ballistic Capture," Journal of Guidance, Control, and Dynamics, Vol. 16, No. 4, 1993, pp. 770–775. doi:https://doi.org/10.2514/3.21079 JGCODS 0731-5090 LinkGoogle Scholar[2] Chung M., Hatch S. J., Kangas J. A., Long S. M., Roncoli R. B. and Sweetser T. H., "Trans-Lunar Cruise Trajectory Design of GRAIL (Gravity Recovery and Interior Laboratory) Mission," AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2010-8684, Aug. 2010. LinkGoogle Scholar[3] Belbruno E. and Miller J., "A Ballistic Lunar Capture Trajectory for the Japanese Spacecraft Hiten," Jet Propulsion Lab., California Inst. of Technology TR IOM 312/904-1731-EAB, Pasadena, CA, 1990. Google Scholar[4] Circi C. and Teofilatto P., "On the Dynamics of Weak Stability Boundary Lunar Transfers," Celestial Mechanics and Dynamical Astronomy, Vol. 79, No. 1, 2001, pp. 41–72. doi:https://doi.org/10.1023/A:1011153610564 CrossrefGoogle Scholar[5] Belbruno E., Capture Dynamics and Chaotic Motions in Celestial Mechanics: With Applications to the Construction of Low Energy Transfers, Princeton Univ. Press, Princeton, NJ, 2004, pp. 103–165. Google Scholar[6] Romagnoli D. and Circi C., "Earth–Moon Weak Stability Boundaries in the Restricted Three and Four Body Problem," Celestial Mechanics and Dynamical Astronomy, Vol. 103, No. 1, 2009, pp. 79–103. doi:https://doi.org/10.1007/s10569-008-9169-y CrossrefGoogle Scholar[7] García F. and Gómez G., "A Note on Weak Stability Boundaries," Celestial Mechanics and Dynamical Astronomy, Vol. 97, No. 2, 2007, pp. 87–100. doi:https://doi.org/10.1007/s10569-006-9053-6 CrossrefGoogle Scholar[8] Topputo F. and Belbruno E., "Computation of Weak Stability Boundaries: Sun–Jupiter System," Celestial Mechanics and Dynamical Astronomy, Vol. 105, Nos. 1–3, 2009, pp. 3–17. doi:https://doi.org/10.1007/s10569-009-9222-5 CrossrefGoogle Scholar[9] Hyeraci N. and Topputo F., "Method to Design Ballistic Capture in the Elliptic Restricted Three-Body Problem," Journal of Guidance, Control, and Dynamics, Vol. 33, No. 6, 2010, pp. 1814–1823. doi:https://doi.org/10.2514/1.49263 JGCODS 0731-5090 LinkGoogle Scholar[10] Circi C., "Properties of Transit Trajectory in the Restricted Three and Four-Body Problem," Advances in Space Research, Vol. 49, No. 10, 2012, pp. 1506–1519. doi:https://doi.org/10.1016/j.asr.2012.02.034 ASRSDW 0273-1177 CrossrefGoogle Scholar[11] Fantino E., Gómez G., Masdemont J. and Ren Y., "A Note on Libration Point Orbits, Temporary Capture and Low-Energy Transfers," Acta Astronautica, Vol. 67, Nos. 9–10, 2010, pp. 1038–1052. doi:https://doi.org/10.1016/j.actaastro.2010.06.037 AASTCF 0094-5765 CrossrefGoogle Scholar[12] Belbruno E., Gidea M. and Topputo F., "Weak Stability Boundary and Invariant Manifolds," SIAM Journal on Applied Dynamical Systems, Vol. 9, No. 3, 2010, pp. 1061–1089. doi:https://doi.org/10.1137/090780638 SJADAY 1536-0040 CrossrefGoogle Scholar[13] Belbruno E., Gidea M. and Topputo F., "Geometry of Weak Stability Boundaries," Qualitative Theory of Dynamical Systems, Vol. 12, No. 1, 2013, pp. 53–66. doi:https://doi.org/10.1007/s12346-012-0069-x CrossrefGoogle Scholar[14] Parker J. S., Anderson R. L. and Peterson A., "Surveying Ballistic Transfers to Low Lunar Orbit," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 5, 2013, pp. 1501–1511. doi:https://doi.org/10.2514/1.55661 JGCODS 0731-5090 LinkGoogle Scholar[15] Luo Z.-F. and Topputo F., "Capability of Satellite-Aided Ballistic Capture," Communications in Nonlinear Science and Numerical Simulation, Vol. 48, July 2017, pp. 211–223. doi:https://doi.org/10.1016/j.cnsns.2016.12.021 1007-5704 CrossrefGoogle Scholar[16] Oshima K., Topputo F., Campagnola S. and Yanao T., "Analysis of Medium-Energy Transfers to the Moon," Celestial Mechanics and Dynamical Astronomy, Vol. 127, No. 3, 2017, pp. 285–300. doi:https://doi.org/10.1007/s10569-016-9727-7 CrossrefGoogle Scholar[17] Campagnola S., Buffington B. B. and Petropoulos A. E., "Jovian Tour Design for Orbiter and Lander Missions to Europa," Acta Astronautica, Vol. 100, July–Aug. 2014, pp. 68–81. doi:https://doi.org/10.1016/j.actaastro.2014.02.005 AASTCF 0094-5765 CrossrefGoogle Scholar[18] Brasil P., Prado A., Deienno R. and Yokoyama T., "Study of the Gravitational Capture of a Spacecraft by Jupiter," Advances in Space Research, Vol. 55, No. 2, 2015, pp. 668–681. doi:https://doi.org/10.1016/j.asr.2014.11.005 ASRSDW 0273-1177 CrossrefGoogle Scholar[19] Campagnola S. and Lo M., "BepiColombo Gravitational Capture and the Elliptic Restricted Three-Body Problem," Proceedings in Applied Mathematics and Mechanics, Vol. 7, No. 1, 2007, pp. 1030905–1030906. doi:https://doi.org/10.1002/pamm.v7:1. CrossrefGoogle Scholar[20] Hyeraci N. and Topputo F., "The Role of True Anomaly in Ballistic Capture," Celestial Mechanics and Dynamical Astronomy, Vol. 116, No. 2, 2013, pp. 175–193. doi:https://doi.org/10.1007/s10569-013-9481-z CrossrefGoogle Scholar[21] Luo Z.-F., Topputo F., Bernelli-Zazzera F. and Tang G.-J., "Constructing Ballistic Capture Orbits in the Real Solar System Model," Celestial Mechanics and Dynamical Astronomy, Vol. 120, No. 4, 2014, pp. 433–450. doi:https://doi.org/10.1007/s10569-014-9580-5 CrossrefGoogle Scholar[22] Mingotti G., Topputo F. and Bernelli-Zazzera F., "Earth–Mars Transfers with Ballistic Escape and Low-Thrust Capture," Celestial Mechanics and Dynamical Astronomy, Vol. 110, No. 2, 2011, pp. 169–188. doi:https://doi.org/10.1007/s10569-011-9343-5 CrossrefGoogle Scholar[23] Topputo F., Vasile M. and Bernelli-Zazzera F., "Low Energy Interplanetary Transfers Exploiting Invariant Manifolds of the Restricted Three-Body Problem," Journal of the Astronautical Sciences, Vol. 53, No. 4, 2005, pp. 353–372. JALSA6 0021-9142 CrossrefGoogle Scholar[24] Luo Z.-F. and Topputo F., "Analysis of Ballistic Capture in Sun–Planet Models," Advances in Space Research, Vol. 56, No. 6, 2015, pp. 1030–1041. doi:https://doi.org/10.1016/j.asr.2015.05.042 ASRSDW 0273-1177 CrossrefGoogle Scholar[25] Li X. and Qiao D., "Earth–Phobos Transfer with Ballistic Trajectory in the Sun–Mars System," 2018 AIAA SPACE and Astronautics Forum and Exposition, AIAA Paper 2018-5309, 2018. LinkGoogle Scholar[26] Topputo F. and Belbruno E., "Earth–Mars Transfers with Ballistic Capture," Celestial Mechanics and Dynamical Astronomy, Vol. 121, No. 4, 2015, pp. 329–346. doi:https://doi.org/10.1007/s10569-015-9605-8 CrossrefGoogle Scholar[27] de Almeida Prado A. F. B., "Close-Approach Trajectories in the Elliptic Restricted Problem," Journal of Guidance, Control, and Dynamics, Vol. 20, No. 4, 1997, pp. 797–802. doi:https://doi.org/10.2514/2.4115 JGCODS 0731-5090 LinkGoogle Scholar[28] Hiday-Johnston L. A. and Howell K. C., "Transfers Between Libration-Point Orbits in the Elliptic Restricted Problem," Acta Astronautica, Vol. 32, No. 4, 1994, pp. 245–254. doi:https://doi.org/10.1016/0094-5765(94)90077-9 AASTCF 0094-5765 CrossrefGoogle Scholar[29] Campagnola S., Lo M. W. and Newton P., "Subregions of Motion and Elliptic Halo Orbits in the Elliptic Restricted Three-Body Problem," Proceedings of the 18th AAS/AIAA Spaceflight Mechanics Meeting, American Astronautical Soc., Univelt, Inc., San Diego, CA, 2008, pp. 8–200. Google Scholar[30] Dei Tos D. A., Russell R. P. and Topputo F., "Survey of Mars Ballistic Capture Trajectories Using Periodic Orbits as Generating Mechanisms," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 6, 2018, pp. 1227–1242. doi:https://doi.org/10.2514/1.G003158 JGCODS 0731-5090 LinkGoogle Scholar[31] Nakamiya M., Scheeres D. J., Yamakawa H. and Yoshikawa M., "Analysis of Capture Trajectories into Periodic Orbits About Libration Points," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1344–1351. doi:https://doi.org/10.2514/1.33796 JGCODS 0731-5090 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byRobust Near-Optimal Aerocapture Guidance Method Based on Saturation Function13 November 2022 | Applied Sciences, Vol. 12, No. 22Aerogravity-assist capture into the three-body system: A preliminary designActa Astronautica, Vol. 198Rapid Construction of Aerocapture Attainability Sets Using Sequential Convex Programming24 June 2022 | Applied Sciences, Vol. 12, No. 13Transfer between libration orbits through the outer branches of manifolds for Phobos explorationActa Astronautica, Vol. 2Mars High Orbit Capture Using Manifolds in the Sun–Mars SystemXiangyu Li, Dong Qiao and Christian Circi2 April 2020 | Journal of Guidance, Control, and Dynamics, Vol. 43, No. 7 What's Popular Volume 42, Number 5May 2019 CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsOrbital ManeuversOrbital PropertyPlanetary Science and ExplorationPlanetsSpace MissionsSpace OrbitSpace Science and Technology KeywordsOrbital EccentricitySphere of InfluenceEarthInterplanetary TrajectoriesPropellantElliptical OrbitLagrange PointsMars MissionsSolar SystemAcknowledgmentsThis work was supported by the National Natural Science Foundation of China (grants 11572038 and 11772050), Chang Jiang Scholars Program, the Discipline Innovative Engineering Plan (111 Project), and the Graduate Technological Innovation Project of Beijing Institute of Technology.PDF Received1 August 2018Accepted24 December 2018Published online19 February 2019

Referência(s)