Artigo Acesso aberto Revisado por pares

T-cell exhaustion correlates with improved outcomes in kidney transplant recipients

2019; Elsevier BV; Volume: 96; Issue: 2 Linguagem: Inglês

10.1016/j.kint.2019.01.040

ISSN

1523-1755

Autores

Miguel Fribourg, Lisa Anderson, Clara Fischman, Chiara Cantarelli, Laura Perin, Gaetano La Manna, Adeeb Rahman, Bryna E. Burrell, Peter S. Heeger, Paolo Cravedi,

Tópico(s)

Immune Cell Function and Interaction

Resumo

Continuous antigen stimulation during chronic infection or malignancy can promote functional T cell silencing, a phenomenon called T cell exhaustion. The prevalence and impact of T cell exhaustion following organ transplantation, another immune stimulus with persistently high antigen load, are unknown. Here, we characterized serially collected peripheral blood mononuclear cells from 26 kidney transplant recipients using time-of-flight mass cytometry (CyTOF) to define distinct subsets of circulating exhausted T cells and their relationship to induction therapy and allograft function. We observed an increase in specific subsets of CD4+ and CD8+ exhausted T cells from pre-transplant to 6-months post-transplant, with greater increases in participants given anti-thymocyte globulin induction than in participants who received no induction or non-depleting induction. The percentages of exhausted T cells at 6 months correlated inversely with adenosine triphosphate (ATP) production (a surrogate of T cell function) and with allograft interstitial fibrosis. Guided by the CyTOF data, we delineated a PD-1+CD57- phenotype for CD4+ and CD8+ exhausted T cells, and confirmed that these cells have limited capacity for cytokine secretion and ATP production. In an independent cohort of 50 kidney transplant recipients, we confirmed the predicted increase of PD-1+CD57- exhausted T cells after lymphocyte-depleting induction therapy and its direct correlation with better allograft function. Our findings suggest that monitoring T cell exhaustion can be useful for post-transplant risk assessment and support the need to develop and test strategies aimed at augmenting T cell exhaustion following kidney transplantation.

Referência(s)