Artigo Acesso aberto Revisado por pares

Influence of Nozzle Cavity on Indirect Vortex- and Entropy-Sound Production

2019; American Institute of Aeronautics and Astronautics; Volume: 57; Issue: 7 Linguagem: Inglês

10.2514/1.j058138

ISSN

1533-385X

Autores

Lionel Hirschberg, Steven J. Hulshoff, Jean Collinet, C. Schram, Thierry Schuller,

Tópico(s)

Spacecraft and Cryogenic Technologies

Resumo

No AccessTechnical NotesInfluence of Nozzle Cavity on Indirect Vortex- and Entropy-Sound ProductionL. Hirschberg, S. J. Hulshoff, J. Collinet, C. Schram and T. SchullerL. Hirschbergvon Kármán Institute for Fluid Dynamics, 1640 Sint-Genesius-Rode, Belgium, S. J. HulshoffDelft University of Technology, 2629 HS Delft, The Netherlands, J. CollinetArianeGroup, 78130 Les Mureaux, France, C. Schramvon Kármán Institute for Fluid Dynamics, 1640 Sint-Genesius-Rode, Belgium and T. SchullerInstitute of Fluid Mechanics of Toulouse, 31400 Toulouse, FrancePublished Online:19 Mar 2019https://doi.org/10.2514/1.J058138SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Hirschberg L., Schuller T., Collinet J., Schram C. and Hirschberg A., "Analytical Model for the Prediction of Pulsations in a Cold-Gas Scale-Model of a Solid Rocket Motor," Journal of Sound and Vibration, Vol. 19, April 2018, pp. 445–368. doi:https://doi.org/10.1016/j.jsv.2018.01.025 JSVIAG 0022-460X Google Scholar[2] Hirschberg L., "Low Order Modeling of Vortex Driven Self-Sustained Pressure Pulsations in Solid Rocket Motors," Ph.D. Thesis, CentraleSupélec, Univ. Paris Saclay, France, 2019. Google Scholar[3] Dotson K. W., Koshigoe S. and Pace K. K., "Vortex Shedding in a Large Solid Rocket Motor Without Inhibitors at the Segmented Interfaces," Journal of Propulsion and Power, Vol. 13, No. 2, 1997, pp. 197–206. doi:https://doi.org/10.2514/2.5170 JPPOEL 0748-4658 LinkGoogle Scholar[4] Anthoine J., "Experimental and Numerical Study of Aeroacoustic Phenomena in Large Solid Propellant Boosters, with Application to the Ariane 5 Solid Rocket Motor," Ph.D. Thesis, Free Univ. of Brussels, Brussels, 2000. Google Scholar[5] Fabignon Y., Dupays J., Avalon G., Vuillot F., Lupoglazoff N., Casalis G. and Prévost M., "Instabilities and Pressure Oscillations in Solid Rocket Motors," Aerospace Science and Technology, Vol. 7, No. 3, 2003, pp. 191–200. doi:https://doi.org/10.1016/S1270-9638(02)01194-X CrossrefGoogle Scholar[6] Anthoine J., Buchlin J.-M. and Hirschberg A., "Effect of Nozzle Cavity on Resonance in Large SRM: Theoretical Modeling," Journal of Propulsion and Power, Vol. 18, No. 2, 2002, pp. 304–311. doi:https://doi.org/10.2514/2.5935 JPPOEL 0748-4658 LinkGoogle Scholar[7] Gallier S., Prevost M. and Hijlkema J., "Effects of Cavity on Thrust Oscillations in Subscale Solid Rocket Motors," 45th AIAA/ASME/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2009-5253, Aug. 2009. doi:https://doi.org/10.2514/6.2009-5253 LinkGoogle Scholar[8] Hirschberg L., Hulshoff S. J., Collinet J., Schram C. and Schuller T., "Vortex Nozzle Interaction in Solid Rocket Motors: A Scaling Law for Upstream Acoustic Response," Journal of the Acoustical Society of America, Vol. 144, No. 1, 2018, pp. EL46–EL51. doi:https://doi.org/10.1121/1.5046441 CrossrefGoogle Scholar[9] Hirschberg L., Schuller T., Schram C., Collinet J., Yiao M. and Hirschberg A., "Interaction of a Vortex with a Contraction in a 2-Dimensional Channel: Incompressible Flow Prediction of Sound Pulse," 23rd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2017-3701, 2017. doi:https://doi.org/10.2514/6.2017-3701 LinkGoogle Scholar[10] Hulshoff S. J., Hirschberg A. and Hofmans G. C. J., "Sound Production of Vortex Nozzle Interactions," Journal of Fluid Mechanics, Vol. 439, July 2001, pp. 335–352. doi:https://doi.org/10.1017/S0022112001004554 JFLSA7 0022-1120 CrossrefGoogle Scholar[11] Dowling A. P. and Mahmoudi Y., "Combustion Noise," Proceedings of the Combustion Institute, Vol. 35, No. 1, 2015, pp. 65–100. doi:https://doi.org/10.1016/j.proci.2014.08.016 CrossrefGoogle Scholar[12] Morgans A. S. and Duran I., "Entropy Noise: A Review of Theory, Progress and Challenges," International Journal of Spray and Combustion Dynamics, Vol. 8, No. 4, 2016, pp. 285–298. doi:https://doi.org/10.1177/1756827716651791 CrossrefGoogle Scholar[13] Venkatakrishnan V. and Jameson A., "Computation of Unsteady Transonic Flows by the Solution of Euler Equations," AIAA Journal, Vol. 26, No. 8, 1988, pp. 974–981. doi:https://doi.org/10.2514/3.9999 AIAJAH 0001-1452 LinkGoogle Scholar[14] Howe M. S., "Contributions to the Theory of Aerodynamic Sound: with Applications to Excess Jet Noise and the Theory of the Flute," Journal of Fluid Mechanics, Vol. 71, No. 4, 1975, pp. 625–673. doi:https://doi.org/10.1017/S0022112075002777 JFLSA7 0022-1120 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byExperimental investigations of indirect noise due to modulation of axial vorticity and entropy upstream of a choked nozzleJournal of Sound and Vibration, Vol. 532Sound production due to main-flow oriented vorticity-nozzle interaction in absence of a net swirlLionel Hirschberg, Friedrich Bake and Steven J. Hulshoff13 June 2022Aluminum combustion instabilities: Dimensionless numbers controlling the instability in solid rocket motorsCombustion and Flame, Vol. 232Swirl-Nozzle Interaction Experiments: Influence of Injection-Reservoir Pressure and Injection Pulse DurationLionel Hirschberg, Friedrich Bake, Karsten Knobloch and Steven J. Hulshoff28 July 2021Swirl–nozzle interaction experiment: quasi-steady model-based analysis27 July 2021 | Experiments in Fluids, Vol. 62, No. 8Swirl–Nozzle Interaction Experiments: Influence of Injection-Reservoir Pressure and Injection TimeLionel Hirschberg , Friedrich Bake, Karsten Knobloch and Steven J. Hulshoff21 May 2021 | AIAA Journal, Vol. 59, No. 7Shear layer synchronization of aerodynamically isolated opposite cavities due to acoustic resonance excitationPhysics of Fluids, Vol. 33, No. 5Sound Production due to Swirl–Nozzle Interaction: Model-Based Analysis of ExperimentsL. Hirschberg, S. J. Hulshoff and F. Bake11 November 2020 | AIAA Journal, Vol. 59, No. 4Lumped-Element Model for Vortex–Nozzle Interaction in Solid Rocket MotorsL. Hirschberg and S. J. Hulshoff26 May 2020 | AIAA Journal, Vol. 58, No. 7Modeling and analysis of triggering pulse to thermoacoustic instability in an end-burning-grain model solid rocket motorAerospace Science and Technology, Vol. 95 What's Popular Volume 57, Number 7July 2019 CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. AcknowledgmentsThis work was funded by Association Nationale Recherche et de la Technologie (ANRT) and ArianeGroup through a Conventions Industrielles de Formation par la REcherche (CIFRE) grant (no. 2015/0938). Support offered by Serge Radulovic and Franck Godfroy of ArianeGroup is acknowledged.PDF Received26 November 2018Accepted17 February 2019Published online19 March 2019

Referência(s)