Artigo Revisado por pares

A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods

2019; Elsevier BV; Volume: 573; Linguagem: Inglês

10.1016/j.jhydrol.2019.03.073

ISSN

1879-2707

Autores

Khabat Khosravi, Himan Shahabi, Binh Thai Pham, Jan Adamowski, Ataollah Shirzadi, Biswajeet Pradhan, Jie Dou, Haï-Bang Ly, Gyula Gróf, Ho Huu Loc, Haoyuan Hong, Kamran Chapi, Indra Prakash,

Tópico(s)

Groundwater and Watershed Analysis

Resumo

Floods around the world are having devastating effects on human life and property. In this paper, three Multi-Criteria Decision-Making (MCDM) analysis techniques (VIKOR, TOPSIS and SAW), along with two machine learning methods (NBT and NB), were tested for their ability to model flood susceptibility in one of China’s most flood-prone areas, the Ningdu Catchment. Twelve flood conditioning factors were used as input parameters: Normalized Difference Vegetation Index (NDVI), lithology, land use, distance from river, curvature, altitude, Stream Transport Index (STI), Topographic Wetness Index (TWI), Stream Power Index (SPI), soil type, slope and rainfall. The predictive capacity of the models was evaluated and validated using the Area Under the Receiver Operating Characteristic curve (AUC). While all models showed a strong flood prediction capability (AUC > 0.95), the NBT model performed best (AUC = 0.98), suggesting that, among the models studied, the NBT model is a promising tool for the assessment of flood-prone areas and can allow for proper planning and management of flood hazards.

Referência(s)
Altmetric
PlumX