Practical Coupling Rejection Control for Herbst Maneuver with Thrust Vector
2019; American Institute of Aeronautics and Astronautics; Volume: 56; Issue: 4 Linguagem: Inglês
10.2514/1.c035338
ISSN1533-3868
AutoresJunjie Liu, Zengqiang Chen, Mingwei Sun, Qinglin Sun,
Tópico(s)Hydraulic and Pneumatic Systems
ResumoNo AccessEngineering NotesPractical Coupling Rejection Control for Herbst Maneuver with Thrust VectorJunjie Liu, Zengqiang Chen, Mingwei Sun and Qinglin SunJunjie LiuNankai University, 300350 Tianjin, People's Republic of China, Zengqiang ChenNankai University, 300350 Tianjin, People's Republic of China, Mingwei SunNankai University, 300350 Tianjin, People's Republic of China and Qinglin SunNankai University, 300350 Tianjin, People's Republic of ChinaPublished Online:21 Apr 2019https://doi.org/10.2514/1.C035338SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Wu D., Chen M. and Gong H., "Robust Control of Post-Stall Pitching Maneuver Based on Finite-Time Observers," ISA Transactions, Vol. 70, No. 4, 2017, pp. 53–63. doi:https://doi.org/10.1016/j.isatra.2017.06.015 ISATAZ 0019-0578 CrossrefGoogle Scholar[2] Yang J. L. and Zhu J. H., "A Hybrid NDI Control Method for the High-Alpha Super-Maneuver Flight Control," Proceedings of American Control Conference, IEEE Publ., Piscataway, NJ, 2016, pp. 6747–6753. doi:https://doi.org/10.1109/ACC.2016.7526734 Google Scholar[3] Mukherjee B. K., Thomas P. R. and Sinha M., "Automatic Recovery of a Combat Aircraft from a Completed Cobra and Herbst Maneuver: A Sliding Mode Control Based Scheme," Proceedings of Indian Control Conference, IEEE Publ., Piscataway, NJ, 2016, pp. 259–266. doi:https://doi.org/10.1109/INDIANCC.2016.7441137 Google Scholar[4] Sinha M., Kuttieri R. A., Ghosh A. K. and Misra A., "High Angle of Attack Parameter Estimation of Cascaded Fins Using Neural Network," Journal of Guidance, Control, and Dynamics, Vol. 50, No. 1, 2013, pp. 272–291. doi:https://doi.org/10.2514/1.C031912 JGCODS 0731-5090 Google Scholar[5] Ozgur A. and Ozgoren M. K., "High-Alpha Flight Maneuverability Enhancement of a Fighter Aircraft Using Thrust-Vectoring Control," Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 1971, pp. 1480–1493. doi:https://doi.org/10.2514/1.28620 JGCODS 0731-5090 Google Scholar[6] Snell S. A., Enns D. F. and Garrard W. L., "Nonlinear Inversion Flight Control for a Supermaneuverable Aircraft," Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 976–984. doi:https://doi.org/10.2514/3.20932 JGCODS 0731-5090 LinkGoogle Scholar[7] Adams R. J., Buffington J. M. and Banda S. S., "Design of Nonlinear Control Laws for High-Angle-of-Attack Flight," Journal of Guidance, Control, and Dynamics, Vol. 17, No. 4, 1994, pp. 737–746. doi:https://doi.org/10.2514/3.21262 JGCODS 0731-5090 LinkGoogle Scholar[8] Seshagiri S. and Promtun E., "Sliding Mode Control of F-16 Longitudinal Dynamics," Proceedings of American Control Conference, IEEE Publ., Piscataway, NJ, 2008, pp. 1520–1532. doi:https://doi.org/10.1109/ACC.2008.4586748 Google Scholar[9] Chiang R. Y., Safonov M. G. and Haiges K., "A Fixed H∞ Controller for a Supermaneuverable Fighter Performing the Herbst Maneuver," Automatica, Vol. 29, No. 1, 1993, pp. 111–127. doi:https://doi.org/10.1016/0005-1098(93)90176-T ATCAA9 0005-1098 CrossrefGoogle Scholar[10] Sun M., Wang Z. and Chen Z., "Practical Solution to Attitude Control Within Wide Envelope," Aircraft Engineering and Aerospace Technology, Vol. 86, No. 2, 2014, pp. 117–128. doi:https://doi.org/10.1108/AEAT-10-2012-0167 AATEEB CrossrefGoogle Scholar[11] Han J. Q., "From PID to Active Disturbance Rejection Control," IEEE Transactions on Industrial Electronics, Vol. 56, No. 3, 2009, pp. 900–906. doi:https://doi.org/10.1109/TIE.2008.2011621 ITIED6 0278-0046 CrossrefGoogle Scholar[12] Gao Z. Q., "On the Centrality of Disturbance Rejection in Automatic Control," ISA Transactions, Vol. 53, No. 4, 2014, pp. 850–857. doi:https://doi.org/10.1016/j.isatra.2013.09.012 ISATAZ 0019-0578 CrossrefGoogle Scholar[13] Zheng Q., Chen Z. and Gao Z., "A Practical Approach to Disturbance Decoupling Control," Control Engineering Practice, Vol. 17, No. 9, 2009, pp. 1016–1025. doi:https://doi.org/10.1016/j.conengprac.2009.03.005 COEPEL 0967-0661 CrossrefGoogle Scholar[14] Liu H. and Li S., "Speed Control for PMSM Servo System Using Predictive Functional Control and Extended State Observer," IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 2012, pp. 1171–1183. doi:https://doi.org/10.1109/TIE.2011.2162217 ITIED6 0278-0046 CrossrefGoogle Scholar[15] Sun M., Wang Z., Wang Y. and Chen Z., "On Low-Velocity Compensation of Brushless DC Servo in the Absence of Friction Model," IEEE Transactions on Industrial Electronics, Vol. 60, No. 9, 2013, pp. 3897–3905. doi:https://doi.org/10.1109/TIE.2012.2208434 ITIED6 0278-0046 CrossrefGoogle Scholar[16] Sonneveldt L., "Nonlinear F-16 Model Description," Delft Univ. of Technology, Technical Report, Ver. 1.0, The Netherlands, 2010, pp. 1–19. Google Scholar[17] Herbst W. B., "Future Fight Technologies," Journal of Aircraft, Vol. 17, No. 8, 1980, pp. 561–566. doi:https://doi.org/10.2514/3.44674 LinkGoogle Scholar[18] Herbst W. B., "Dynamics of Air Combat," Journal of Aircraft, Vol. 20, No. 7, 1983, pp. 594–598. doi:https://doi.org/10.2514/3.44916 LinkGoogle Scholar[19] Qiu D., Sun M., Wang Z., Wang Y. and Chen Z., "Practical Wind-Disturbance Rejection for Large Deep Space Observatory Antenna," IEEE Transactions on Control Systems Technology, Vol. 22, No. 5, 2014, pp. 1983–1990. doi:https://doi.org/10.1109/TCST.2013.2296935 IETTE2 1063-6536 CrossrefGoogle Scholar[20] Godbole A. A. and Talole S. E., "Extending the Operating Range of Linear Controller by Means of ESO," Proceedings of Computational Intelligence and Information Technology, Vol. 250, Pune, India, 2011, pp. 44–49. doi:https://doi.org/10.1007/978-3-642-25734-6 Google Scholar[21] Daniel J. B. and Dale F. E., "Nonlinear Control Law with Application to High Angle-of-Attack Flight," Journal of Guidance, Control, and Dynamics, Vol. 15, No. 3, 1992, pp. 761–767. doi:https://doi.org/10.2514/3.20902 JGCODS 0731-5090 LinkGoogle Scholar[22] Li C. and Yang J., "Roll Control Using Only Synthetic Jet Actuators at High Angle of Attack," Journal of Aircraft, Vol. 54, No. 1, 2016, pp. 1–7. doi:https://doi.org/10.2514/1.C033670 Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byPath-Following Control for Thrust-Vectored Hypersonic Aircraft6 March 2023 | Energies, Vol. 16, No. 5Backstepping Control for Asymmetric Fighter Aircraft Executing the High Alpha Herbst ManeuverSuper-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer28 January 2020 | Nonlinear Dynamics, Vol. 99, No. 4 What's Popular Volume 56, Number 4July 2019 CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3868 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAirspeedComputational Fluid DynamicsFlow RegimesFluid DynamicsMonte Carlo MethodNumerical AnalysisSlip (Aerodynamics)Vortex Dynamics KeywordsAircraft ManeuversThrust Vector ControlAngle of AttackMonte Carlo SimulationActive Disturbance Rejection ControlFighter AircraftControl SurfacesSideslip AngleHeading AngleAerodynamic ForceAcknowledgmentsThis work was supported partly by the Natural Science Foundation of China under grants 61573199 and 61573197. The authors thank the editors and the anonymous reviewers for their helpful comments and suggestions that allowed us to improve the paper.PDF Received13 November 2018Accepted12 March 2019Published online21 April 2019
Referência(s)