Artigo Revisado por pares

Combined Nonlinear H∞ Controller for a Controlled-Floating Space Robot

2019; American Institute of Aeronautics and Astronautics; Volume: 42; Issue: 8 Linguagem: Inglês

10.2514/1.g003811

ISSN

1533-3884

Autores

Asma Seddaoui, Chakravarthini M. Saaj,

Tópico(s)

Silicone and Siloxane Chemistry

Resumo

No AccessEngineering NotesCombined Nonlinear H∞ Controller for a Controlled-Floating Space RobotAsma Seddaoui and Chakravarthini M. SaajAsma SeddaouiUniversity of Surrey, Guildford, England GU2 7XH, United Kingdom and Chakravarthini M. SaajUniversity of Surrey, Guildford, England GU2 7XH, United KingdomPublished Online:21 Apr 2019https://doi.org/10.2514/1.G003811SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Lee N., Backes P., Burdick J., Pellegrino S., Fuller C., Hogstrom K., Kennedy B., Kim J., Mukherjee R., Seubert C. and et al., "Architecture for In-Space Robotic Assembly of a Modular Space Telescope," Journal of Astronomical Telescopes, Instruments, and Systems, Vol. 2, No. 4, 2016, Paper 041207. doi:https://doi.org/10.1117/1.JATIS.2.4.041207 CrossrefGoogle Scholar[2] Reed B. B., Smith R. C., Naasz B. J., Pellegrino J. F. and Bacon C. E., "The Restore-L Servicing Mission," AIAA Space Conference, AIAA Paper 2016-5478, 2016. doi:https://doi.org/10.2514/6.2016-5478 LinkGoogle Scholar[3] Whittaker W., Urmson C., Staritz P., Kennedy B. and Ambrose R., "Robotics for Assembly, Inspection, and Maintenance of Space Macrofacilities," Proceedings of AIAA Space Conference, AIAA Paper 2000-5288, Sept. 2000. Google Scholar[4] Jaekel S., Lampariello R., Panin G., Sagardia M., Brunner B., Porges O., Kraemer E., Wieser M., Haarmann R., Pietras M. T. and et al., "Robotic Capture and De-Orbit of a Heavy, Uncooperative and Tumbling Target in Low Earth Orbit," Proceedings of 13th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), ESA, Noordwijk, The Netherlands, May 2015. Google Scholar[5] Nguyen-Huynh T. C. and Sharf I., "Adaptive Reactionless Motion and Parameter Identification in Postcapture of Space Debris," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 404–414. doi:https://doi.org/10.2514/1.57856 JGCODS 0731-5090 LinkGoogle Scholar[6] James F., Shah S. V., Singh A. K., Krishna K. M. and Misra A. K., "Reactionless Maneuvering of a Space Robot in Precapture Phase," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 10, 2016, pp. 2419–2425. doi:https://doi.org/10.2514/1.G001828 JGCODS 0731-5090 LinkGoogle Scholar[7] Jayakody H. S., Shi L., Katupitiya J. and Kinkaid N., "Robust Adaptive Coordination Controller for a Spacecraft Equipped with a Robotic Manipulator," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 12, 2016, pp. 2699–2711. doi:https://doi.org/10.2514/1.G002145 JGCODS 0731-5090 LinkGoogle Scholar[8] Flores-Abad A., Ma O., Pham K. and Ulrich S., "A Review of Space Robotics Technologies for On-Orbit Servicing," Progress in Aerospace Sciences, Vol. 68, July 2014, pp. 1–26. doi:https://doi.org/10.1016/j.paerosci.2014.03.002 PAESD6 0376-0421 CrossrefGoogle Scholar[9] Dubowsky S. and Papadopoulos E., "The Kinematics, Dynamics, and Control of Free-Flying and Free-Floating Space Robotic Systems," IEEE Transactions on Robotics and Automation, Vol. 9, No. 5, 1993, pp. 531–543. doi:https://doi.org/10.1109/70.258046 IRAUEZ 1042-296X CrossrefGoogle Scholar[10] Moosavian S. A. A. and Papadopoulos E., "Free-Flying Robots in Space: An Overview of Dynamics Modeling, Planning and Control," Robotica, Vol. 25, No. 5, Sept. 2007, pp. 537–547. doi:https://doi.org/10.1017/S0263574707003438 ROBODV CrossrefGoogle Scholar[11] Umetani Y. and Yoshida K., "Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix," IEEE Transactions on Robotics and Automation, Vol. 5, No. 3, 1989, pp. 303–314. doi:https://doi.org/10.1109/70.34766 IRAUEZ 1042-296X CrossrefGoogle Scholar[12] Ellery A., An Introduction to Space Robotics, Springer–Verlag, New York, 2000, pp. 217–266. Google Scholar[13] Dubanchet V., Saussié D., Alazard D., Bérard C. and Peuvédic C. L., "Modeling and Control of a Space Robot for Active Debris Removal," CEAS Space Journal, Vol. 7, No. 2, 2015, pp. 203–218. doi:https://doi.org/10.1007/s12567-015-0082-4 CrossrefGoogle Scholar[14] Huang P., Yan J., Yuan J. and Xu Y., "Robust Control of Space Robot for Capturing Objects Using Optimal Control Method," Proceedings of International Conference on Information Acquisition, IEEE Publ., Piscataway, NJ, 2007. doi:https://doi.org/10.1109/icia.2007.4295766 Google Scholar[15] Wilde M., Kwok Choon S., Grompone A. and Romano M., "Equations of Motion of Free-Floating Spacecraft-Manipulator Systems: An Astronautical Engineer's Tutorial," Frontiers in Robotics and AI, Vol. 5, April 2018, Paper 41. doi:https://doi.org/10.3389/frobt.2018.00041 CrossrefGoogle Scholar[16] Papadopoulos E. and Dubowsky S., "Dynamic Singularities in Free-Floating Space Manipulators," Journal of Dynamic Systems, Measurement, and Control, Vol. 115, No. 1, 1993, pp. 44–52. doi:https://doi.org/10.1115/1.2897406 JDSMAA 0022-0434 CrossrefGoogle Scholar[17] Shui H., Peng S., Li X. and Ma H., "Coordinated Manipulator and Spacecraft Motion Planning for Free-Floating Space Robots," 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE Publ., Piscataway, NJ, 2009, pp. 371–375. Google Scholar[18] Shi L., Katupitiya J. and Kinkaid N., "A Robust Attitude Controller for a Spacecraft Equipped with a Robotic Manipulator," American Control Conference (ACC), 2016, IEEE Publ., Piscataway, NJ, 2016, pp. 4966–4971. Google Scholar[19] Virgili-Llop J., Drew J. V., Zappulla R. and Romano M., "Laboratory Experiments of Resident Space Object Capture by a Spacecraft–Manipulator System," Aerospace Science and Technology, Vol. 71, No. 1, 2017, pp. 530–545. doi:https://doi.org/10.1016/j.ast.2017.09.043 CrossrefGoogle Scholar[20] Papadopoulos E. and Dubowsky S., "Coordinated Manipulator/Spacecraft Motion Control for Space Robotic Systems," 1991 IEEE International Conference on Robotics and Automation, 1991. Proceedings, IEEE Publ., Piscataway, NJ, 1991, pp. 1696–1701. Google Scholar[21] Johansson R., "Quadratic Optimization of Motion Coordination and Control," IEEE Transactions on Automatic Control, Vol. 35, No. 11, 1990, pp. 1197–1208. doi:https://doi.org/10.1109/9.59805 IETAA9 0018-9286 CrossrefGoogle Scholar[22] Chen B.-S., Lee T.-S. and Feng J.-H., "A Nonlinear H∞ Control Design in Robotic Systems Under Parameter Perturbation and External Disturbance," International Journal of Control, Vol. 59, No. 2, 1994, pp. 439–461. doi:https://doi.org/10.1080/00207179408923085 IJCOAZ 0020-7179 CrossrefGoogle Scholar[23] Yang C.-D. and Kung C.-C., "Nonlinear H∞ Flight Control of General Six-Degree-of-Freedom Motions," Journal of Guidance, Control, and Dynamics, Vol. 23, No. 2, 2000, pp. 278–288. doi:https://doi.org/10.2514/2.4520 JGCODS 0731-5090 LinkGoogle Scholar[24] Raffo G. V., Ortega M. G. and Rubio F. R., "Nonlinear H-Infinity Controller for the Quad-Rotor Helicopter with Input Coupling," IFAC Proceedings Volumes, Vol. 44, No. 1, 2011, pp. 13,834–13,839. doi:https://doi.org/10.3182/20110828-6-IT-1002.02453 CrossrefGoogle Scholar[25] Uang H.-J. and Lien C.-C., "Mixed H2/H∞ PID Tracking Control Design for Uncertain Spacecraft Systems Using a Cerebellar Model Articulation Controller," IEE Proceedings—Control Theory and Applications, Vol. 153, No. 1, 2006, pp. 1–13. doi:https://doi.org/10.1049/ip-cta:20050172 CrossrefGoogle Scholar[26] Huang Y. and Jia Y., "Nonlinear Robust H-Infinity Tracking Control for 6 DOF Spacecraft Formation with Input Saturation," Proceedings of IEEE 55th Conference on Decision and Control (CDC), IEEE Publ., Piscataway, NJ, Dec. 2016. doi:https://doi.org/10.1109/cdc.2016.7798339 Google Scholar[27] Mao Q., Dou L., Zong Q. and Ding Z., "Attitude Controller Design for Reusable Launch Vehicles During Reentry Phase via Compound Adaptive Fuzzy H-Infinity Control," Aerospace Science and Technology, Vol. 72, Jan. 2018, pp. 36–48. doi:https://doi.org/10.1016/j.ast.2017.10.012 CrossrefGoogle Scholar[28] Liang B., Xu Y. and Bergerman M., "Dynamically Equivalent Manipulator for Space Manipulator System. 1," Proceedings of International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, April 1997. doi:https://doi.org/10.1109/robot.1997.606705 Google Scholar[29] Taveira T. F. P. A., Siqueira A. G. and Terra M., "Adaptive Nonlinear H-Infinity Controllers Applied to a Free-Floating Space Manipulator," IEEE International Conference on Control Applications, IEEE Publ., Piscataway, NJ, Oct. 2006, pp. 1476–1481. doi:https://doi.org/10.1109/cca.2006.286094 Google Scholar[30] Bueno J. N. A., Serrantola W. G., Bezerra R. A. and Grassi V., "LQR and H-Infinity Controls of a Free-Floating Space Manipulator with Two Arms," Proceedings of XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), IEEE Publ., Piscataway, NJ, Oct. 2016. doi:https://doi.org/10.1109/lars-sbr.2016.21 Google Scholar[31] Yoshida K. and Abiko S., "Inertia Parameter Identification for a Free-Flying Space Robot," AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2002-4568, Aug. 2002. doi:https://doi.org/10.2514/6.2002-4568 LinkGoogle Scholar[32] Guang Z., Heming Z. and Liang B., "Attitude Dynamics of Spacecraft with Time-Varying Inertia During On-Orbit Refueling," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 8, 2018, pp. 1744–1754. doi:https://doi.org/10.2514/1.G003474 JGCODS 0731-5090 LinkGoogle Scholar[33] Curtis H. D., Orbital Mechanics for Engineering Students, Butterworth-Heinemann, London, 2013, pp. 367–403. Google Scholar[34] Seddaoui A. and Saaj C., "H-Infinity Control for a Controlled Floating Robotic Spacecraft," International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), ESA, Madrid, Spain, June 2018. Google Scholar[35] Xu Y. and Kanade T., Space Robotics: Dynamics and Control, Vol. 188, Springer Science and Business Media, New York, 1992, pp. 27–44. Google Scholar[36] Goebel D. M. and Katz I., Fundamentals of Electric Propulsion: Ion and Hall Thrusters, Vol. 1, Wiley, New York, 2008, p. 25. CrossrefGoogle Scholar[37] Seddaoui A. and Saaj C., "Optimised Collision-Free Trajectory and Controller Design for Robotic Manipulators," Proceedings of 14th Symposium on Advanced Space Technologies in Robotics and Automation, ESA, Leiden, The Netherlands, June 2017. Google Scholar[38] Parsa S. S., Carretero J. A. and Boudreau R., "Length-Optimized Smooth Obstacle Avoidance for Robotic Manipulators," Transactions of the Canadian Society for Mechanical Engineering, Vol. 35, No. 4, 2011, pp. 505–514. doi:https://doi.org/10.1139/tcsme-2011-0030 TCMEAP 0315-8977 CrossrefGoogle Scholar[39] Zagórski P., "Modeling Disturbances Influencing an Earth-Orbiting Satellite," Pomiary Automatyka Robotyka, Vol. 16, 2012, pp. 98–103. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byNonlinear Tracking Differentiator Based Prescribed Performance Control for Space Manipulator11 February 2023 | International Journal of Control, Automation and Systems, Vol. 19Fixed-time neural adaptive fault-tolerant control for space manipulator under output constraintsActa Astronautica, Vol. 203Review of On-Orbit Robotic Arm Active Debris Capture Removal Methods23 December 2022 | Aerospace, Vol. 10, No. 1Secure practical tracking of an uncertain robotic system under coarse conditions on reference trajectory and obstacles20 December 2022 | IET Control Theory & Applications, Vol. 24Unified neural output-constrained control for space manipulator using tan-type barrier Lyapunov functionAdvances in Space Research, Vol. 8Dynamics and robust control of a space manipulator with flexible appendages for on-orbit servicing14 October 2022 | CEAS Space Journal, Vol. 68An innovative joint-space dynamic theory for rigid multi-axis system - part II: Canonical dynamic equationsApplied Mathematical Modelling, Vol. 110Error model-oriented vibration suppression control of free-floating space robot with flexible joints based on adaptive neural networkEngineering Applications of Artificial Intelligence, Vol. 114Disturbance observer-based robust fixed-time integrated trajectory tracking control for space manipulator24 February 2022 | Robotica, Vol. 40, No. 9Detumbling a Flexible Tumbling Target Using a Space Robot in Post-capture Phase12 July 2022 | The Journal of the Astronautical Sciences, Vol. 69, No. 4Model Predictive and Inversive Control for State Transition of Dynamics Systems9 July 2021 | Advances in Astronautics Science and Technology, Vol. 5, No. 2Tracking control strategy for space flexible manipulator considering nonlinear friction torque based on adaptive fuzzy compensation sliding mode controllerAdvances in Space Research, Vol. 44Robust finite-time trajectory tracking control for a space manipulator with parametric uncertainties and external disturbances28 April 2021 | Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 236, No. 2Adaptive Fault Tolerant Attitude Control of a Nano-Satellite with Three Magnetorquers and One Reaction WheelJournal of Aerospace Engineering, Vol. 35, No. 1Modeling a Controlled-Floating Space Robot for In-Space Services: A Beginner's Tutorial24 December 2021 | Frontiers in Robotics and AI, Vol. 8Adaptive trajectory tracking control of a free-flying space manipulator with guaranteed prescribed performance and actuator saturationActa Astronautica, Vol. 185Robotic Manipulation and Capture in Space: A Survey19 July 2021 | Frontiers in Robotics and AI, Vol. 8Adaptive fuzzy neural network control for a space manipulator in the presence of output constraints and input nonlinearitiesAdvances in Space Research, Vol. 67, No. 6Collision-free optimal trajectory generation for a space robot using genetic algorithmActa Astronautica, Vol. 179Robust control of rotation-floating space robots with flexible appendages for on-orbit servicingIFAC-PapersOnLine, Vol. 54, No. 20Model Prediction and Dynamics Inversion Control of Space Manipulator *Adaptive trajectory tracking control of a free-flying space robot subject to input nonlinearities14 October 2020 | Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 42, No. 11Dynamics modeling and attitude stabilization control of a multiarmed space robot for on-orbit servicingJournal of the Franklin Institute, Vol. 357, No. 13Tutorial Review of Bio-Inspired Approaches to Robotic Manipulation for Space Debris Salvage12 May 2020 | Biomimetics, Vol. 5, No. 2Downsizing an orbital space robot: A dynamic system based evaluationAdvances in Space Research, Vol. 65, No. 10Collision-Free Optimal Trajectory for a Controlled Floating Space Robot17 July 2019 What's Popular Volume 42, Number 8August 2019 CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsApplied MathematicsElementary AlgebraGeneral PhysicsGeometry FunctionsMathematical AnalysisPlanetary Science and ExplorationPlanetsRiccati EquationsSpace Exploration and TechnologySpace RobotSpace Science and Technology KeywordsFree Flying Space RobotTarget SpacecraftProportional Integral DerivativeFuel ConsumptionDynamically Equivalent ManipulatorReusable Launch VehicleMathematical ModelsAngular MotionEarthSecond Order Differential EquationsAcknowledgmentsThe authors wish to acknowledge the U.K. Space Agency, the Surrey Satellite Technology, Ltd., and the Algerian Space Agency for funding this research.PDF Received8 May 2018Accepted4 March 2019Published online21 April 2019

Referência(s)