On the stability of nonconservative continuous systems under kinematic constraints
2017; Wiley; Volume: 97; Issue: 9 Linguagem: Inglês
10.1002/zamm.201600203
ISSN1521-4001
AutoresJean Lerbet, Noël Challamel, François Nicot, Félix Darve,
Tópico(s)Vibration and Dynamic Analysis
ResumoZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und MechanikVolume 97, Issue 9 p. 1100-1119 Original Paper On the stability of nonconservative continuous systems under kinematic constraints J. Lerbet, Corresponding Author J. Lerbet jean.lerbet@ibisc.univ-evry.fr IBISC, UFRST-UEVE, 40, rue du Pelvoux CE 1455, 91020 Evry Courcouronnes cedex, FranceCorresponding author, E-mail: jean.lerbet@ibisc.univ-evry.frSearch for more papers by this authorN. Challamel, N. Challamel Université Européenne de Bretagne Université de Bretagne Sud LIMATB -UBS -Lorient Centre de Recherche Rue de Saint Maudé - BP, 92116 56321 Lorient cedex, FranceSearch for more papers by this authorF. Nicot, F. Nicot IRSTEA, ETNA - Geomechanics Group, 2, rue de la papeterie, 38042 St Martin d'Heres cedex, FranceSearch for more papers by this authorF. Darve, F. Darve Grenoble Alpes University, 3SR, BP 53, 38041 Grenoble cedex 9, FranceSearch for more papers by this author J. Lerbet, Corresponding Author J. Lerbet jean.lerbet@ibisc.univ-evry.fr IBISC, UFRST-UEVE, 40, rue du Pelvoux CE 1455, 91020 Evry Courcouronnes cedex, FranceCorresponding author, E-mail: jean.lerbet@ibisc.univ-evry.frSearch for more papers by this authorN. Challamel, N. Challamel Université Européenne de Bretagne Université de Bretagne Sud LIMATB -UBS -Lorient Centre de Recherche Rue de Saint Maudé - BP, 92116 56321 Lorient cedex, FranceSearch for more papers by this authorF. Nicot, F. Nicot IRSTEA, ETNA - Geomechanics Group, 2, rue de la papeterie, 38042 St Martin d'Heres cedex, FranceSearch for more papers by this authorF. Darve, F. Darve Grenoble Alpes University, 3SR, BP 53, 38041 Grenoble cedex 9, FranceSearch for more papers by this author First published: 10 April 2017 https://doi.org/10.1002/zamm.201600203Citations: 4Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract In this paper we deal with recent results on divergence kinematic structural stability (ki.s.s.) resulting from discrete nonconservative finite systems. We apply them to continuous nonconservative systems which are shown in the well-known Beck column. When the column is constrained by an appropriate additional kinematic constraint, a certain value of the follower force may destabilize the system by divergence. We calculate its minimal value, as well as the optimal constraint. The analysis is carried out in the general framework of inÞnite dimensional Hilbert spaces and non-self-adjoint operators. Citing Literature Volume97, Issue9September 2017Pages 1100-1119 RelatedInformation
Referência(s)