Topology of leaves for minimal laminations by hyperbolic surfaces
2022; Wiley; Volume: 15; Issue: 1 Linguagem: Inglês
10.1112/topo.12222
ISSN1753-8424
AutoresSébastien Alvarez, Joaquín Brum, Matilde Martínez, Rafaël Potrie,
Tópico(s)Advanced Numerical Analysis Techniques
ResumoJournal of TopologyVolume 15, Issue 1 p. 302-346 RESEARCH ARTICLE Topology of leaves for minimal laminations by hyperbolic surfaces Sébastien Alvarez, Corresponding Author Sébastien Alvarez salvarez@cmat.edu.uy CMAT, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay Correspondence Sébastien Alvarez, CMAT, Facultad de Ciencias, Universidad de la República, Igua 4225 esq. Mataojo, 11400 Montevideo, Uruguay. Email: salvarez@cmat.edu.uySearch for more papers by this authorJoaquín Brum, Joaquín Brum IMERL, Facultad de Ingeniería, Universidad de la República, Montevideo, UruguaySearch for more papers by this authorMatilde Martínez, Matilde Martínez IMERL, Facultad de Ingeniería, Universidad de la República, Montevideo, UruguaySearch for more papers by this authorRafael Potrie, Rafael Potrie CMAT, Facultad de Ciencias, Universidad de la República, Montevideo, UruguaySearch for more papers by this author Sébastien Alvarez, Corresponding Author Sébastien Alvarez salvarez@cmat.edu.uy CMAT, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay Correspondence Sébastien Alvarez, CMAT, Facultad de Ciencias, Universidad de la República, Igua 4225 esq. Mataojo, 11400 Montevideo, Uruguay. Email: salvarez@cmat.edu.uySearch for more papers by this authorJoaquín Brum, Joaquín Brum IMERL, Facultad de Ingeniería, Universidad de la República, Montevideo, UruguaySearch for more papers by this authorMatilde Martínez, Matilde Martínez IMERL, Facultad de Ingeniería, Universidad de la República, Montevideo, UruguaySearch for more papers by this authorRafael Potrie, Rafael Potrie CMAT, Facultad de Ciencias, Universidad de la República, Montevideo, UruguaySearch for more papers by this author First published: 20 April 2022 https://doi.org/10.1112/topo.12222 The appendix is by the authors with Maxime Wolff Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Abstract We construct minimal laminations by hyperbolic surfaces whose generic leaf is a disk and contain any prescribed family of surfaces and with a precise control of the topologies of the surfaces that appear. The laminations are constructed via towers of finite coverings of surfaces for which we need to develop a relative version of residual finiteness which may be of independent interest. The main step in establishing this relative version of residual finiteness is to obtain finite covers with control on the second systole of the surface, which is done in the Appendix. In a companion paper, the case of other generic leaves is treated. Volume15, Issue1March 2022Pages 302-346 RelatedInformation
Referência(s)