Flutter Boundary Identification from Time-Domain Simulations Using the Matrix Pencil Method
2019; American Institute of Aeronautics and Astronautics; Volume: 57; Issue: 8 Linguagem: Inglês
10.2514/1.j058072
ISSN1533-385X
AutoresJan F. Kiviaho, Kevin Jacobson, Graeme Kennedy,
Tópico(s)Aerodynamics and Acoustics in Jet Flows
ResumoNo AccessTechnical NotesFlutter Boundary Identification from Time-Domain Simulations Using the Matrix Pencil MethodJan F. Kiviaho, Kevin E. Jacobson and Graeme J. KennedyJan F. KiviahoGeorgia Institute of Technology, Atlanta, Georgia 30332, Kevin E. JacobsonGeorgia Institute of Technology, Atlanta, Georgia 30332 and Graeme J. KennedyGeorgia Institute of Technology, Atlanta, Georgia 30332Published Online:10 Jun 2019https://doi.org/10.2514/1.J058072SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Clark W. S. and Hall K. C., "A Time-Linearized Navier–Stokes Analysis of Stall Flutter," Journal of Turbomachinery, Vol. 122, No. 3, Feb. 1999, pp. 467–476. doi:https://doi.org/10.1115/1.1303073 CrossrefGoogle Scholar[2] Jonsson E., Riso C., Lupp C. A., Cesnik C. E. S., Martins J. R. R. A. and Epureanu B. I., "Flutter and Post-Flutter Constraints in Aircraft Design Optimization," Progress in Aerospace Sciences (in press). doi:https://doi.org/10.1016/j.paerosci.2019.04.001 Google Scholar[3] Jacobson K. E., Kiviaho J. F., Kennedy G. J. and Smith M. J., "Evaluation of Time-Domain Damping Identification Methods for Flutter-Constrained Optimization," Journal of Fluids and Structures, Vol. 87, May 2019, pp. 174–188. doi:https://doi.org/10.1016/j.jfluidstructs.2019.03.011 CrossrefGoogle Scholar[4] Hua Y. and Sarkar T. K., "Matrix Pencil Method for Estimating Parameters of Exponentially Damped/Undamped Sinusoids in Noise," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 38, No. 5, 1990, pp. 814–824. doi:https://doi.org/10.1109/29.56027 CrossrefGoogle Scholar[5] Razavilar J., Li Y. and Liu K. J. R., "Spectral Estimation Based on Structured Low Rank Matrix Pencil," 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Vol. 5, IEEE Publ., Piscataway, NJ, 1996, pp. 2503–2506. doi:https://doi.org/10.1109/ICASSP.1996.547972 Google Scholar[6] Maute K., Nikbay M. and Farhat C., "Coupled Analytical Sensitivity Analysis and Optimization of Three-Dimensional Nonlinear Aeroelastic Systems," AIAA Journal, Vol. 39, No. 11, 2001, pp. 2051–2061. doi:https://doi.org/10.2514/2.1227 LinkGoogle Scholar[7] Martins J. R. R. A., Alonso J. J. and Reuther J. J., "A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design," Optimization and Engineering, Vol. 6, No. 1, 2005, pp. 33–62. doi:https://doi.org/10.1023/B:OPTE.0000048536.47956.62 CrossrefGoogle Scholar[8] Brezillon J., Ronzheimer A., Haar D., Abu-Zurayk M., Lummer M., Kruger W. and Natterer F. J., "Development and Application of Multi-Disciplinary Optimization Capabilities Based on High-Fidelity Methods," 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2012-1757, 2012. doi:https://doi.org/10.2514/6.2012-1757 LinkGoogle Scholar[9] Ghazlane I., Carrier G., Dumont A. and Desideri J. A., "Aerostructural Adjoint Method for Flexible Wing Optimization," 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2012-1924, 2012. doi:https://doi.org/10.2514/6.2012-1924 LinkGoogle Scholar[10] Kenway G. K. W., Kennedy G. J. and Martins J. R. R. A., "Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations," AIAA Journal, Vol. 52, No. 5, 2014 pp. 935–951. doi:https://doi.org/10.2514/1.J052255 LinkGoogle Scholar[11] Kiviaho J. F., Jacobson K., Smith M. J. and Kennedy G., "A Robust and Flexible Coupling Framework for Aeroelastic Analysis and Optimization," 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper 2017-4144, 2017. doi:https://doi.org/10.2514/6.2017-4144 LinkGoogle Scholar[12] Mishra A., Mavriplis D. and Sitaraman J., "Time-Dependent Aeroelastic Adjoint-Based Aerodynamic Shape Optimization of Helicopter Rotors in Forward Flight," AIAA Journal, Vol. 54, No. 12, 2016, pp. 3813–3827. doi:https://doi.org/10.2514/1.J054962 LinkGoogle Scholar[13] Mavriplis D. J., Fabiano E. and Anderson E., "Recent Advances in High-Fidelity Multidisciplinary Adjoint-Based Optimization with the NSU3D Flow Solver Framework," 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, AIAA Paper 2017-1669, 2017. doi:https://doi.org/10.2514/6.2017-1669 LinkGoogle Scholar[14] Fabiano E. and Mavriplis D., "Adjoint-Based Aeroacoustic Design-Optimization of Flexible Rotors in Forward Flight," Journal of the American Helicopter Society, Vol. 62, No. 4, 2017, pp. 1–17. doi:https://doi.org/10.4050/JAHS.62.042005 CrossrefGoogle Scholar[15] Wang L., Diskin B., Biedron R., Nielsen E. J. and Bauchau O., "Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations," 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, AIAA Paper 2017-1670, 2017. doi:https://doi.org/10.2514/6.2017-1670 LinkGoogle Scholar[16] Jacobson K., Kiviaho J. F., Smith M. J. and Kennedy G., "An Aeroelastic Coupling Framework for Time-Accurate Analysis and Optimization," 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, AIAA Paper 2018-0100, 2018. doi:https://doi.org/10.2514/6.2018-0100 LinkGoogle Scholar[17] Kiviaho J. F. and Kennedy G. J., "Efficient and Robust Load and Displacement Transfer Scheme Using Weighted Least-Squares," AIAA Journal, Vol. 57, No. 5, 2019, pp. 2237–2243. doi:https://doi.org/10.2514/1.J057318 LinkGoogle Scholar[18] Kreisselmeier G. and Steinhauser R., "Systematic Control Design by Optimizing a Vector Performance Index," IFAC Proceedings Volumes, Vol. 12, No. 7, Sept. 1979, pp. 113–117. doi:https://doi.org/10.1016/S1474-6670(17)65584-8 CrossrefGoogle Scholar[19] Kennedy G. J. and Hicken J. E., "Improved Constraint-Aggregation Methods," Computer Methods in Applied Mechanics and Engineering, Vol. 289, June 2015, pp. 332–354. doi:https://doi.org/10.1016/j.cma.2015.02.017 CrossrefGoogle Scholar[20] Golub G. H. and Pereyra V., "The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate," SIAM Journal on Numerical Analysis, Vol. 10, No. 2, 1973, pp. 413–432. doi:https://doi.org/10.1137/0710036 CrossrefGoogle Scholar[21] Giles M., "An Extended Collection of Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation," TR 08/01, Oxford Univ. Computing Lab., Oxford, Jan. 2008. Google Scholar[22] Papadopoulo T. and Lourakis M. I. A., "Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications," Computer Vision—ECCV 2000, Springer, Berlin, 2000, pp. 554–570, https://hal.inria.fr/inria-00072686. CrossrefGoogle Scholar[23] Isogai K., "On the Transonic-Dip Mechanism of Flutter of a Sweptback Wing," AIAA Journal, Vol. 17, No. 7, July 1979, pp. 793–795. doi:https://doi.org/10.2514/3.61226 LinkGoogle Scholar[24] Davis S. S., "NACA 64A010 (NASA Ames Model) Oscillatory Pitching," AGARD Rept. 702, 1982. Google Scholar[25] Liu F., Cai J., Zhu Y., Tsai H. M. and Wong A. S. F., "Calculation of Wing Flutter by a Coupled Fluid-Structure Method," Journal of Aircraft, Vol. 38, No. 2, 2001, pp. 334–342. doi:https://doi.org/10.2514/2.2766 LinkGoogle Scholar[26] Alonso J. and Jameson A., "Fully-Implicit Time-Marching Aeroelastic Solutions," 32nd Aerospace Sciences Meeting and Exhibit, AIAA Paper 1994-0056, 1994. doi:https://doi.org/10.2514/6.1994-56 LinkGoogle Scholar[27] Thomas D., Cerquaglia M. L., Boman R., Economon T. D., Alonso J. J., Dimitriadis G. and Terrapon V. E., "CUPyDO—An Integrated Python Environment for Coupled Fluid-Structure Simulations," Advances in Engineering Software, Vol. 128, Feb. 2019, pp. 69–85. doi:https://doi.org/10.1016/j.advengsoft.2018.05.007 CrossrefGoogle Scholar[28] Biao Z., Zhide Q. and Chao G., "Transonic Flutter Analysis of an Airfoil with Approximate Boundary Method," 26th International Congress of the Aeronautical Sciences, Vol. 7, No. 5, ICAS, Sept. 2008. Google Scholar[29] Kraft D., "A Software Package for Sequential Quadratic Programming," TR DFVLR-FB 88-28, DLR German Aerospace Center, Köln, 1988. Google Scholar[30] Perez R. E., Jansen P. W. and Martins J. R. R. A., "pyOpt: A Python-Based Object-Oriented Framework for Nonlinear Constrained Optimization," Structural and Multidisciplinary Optimization, Vol. 45, No. 1, 2012, pp. 101–118. doi:https://doi.org/10.1007/s00158-011-0666-3 CrossrefGoogle Scholar[31] Nielsen E. J. and Anderson W. K., "Recent Improvements in Aerodynamic Design Optimization on Unstructured Meshes," AIAA Journal, Vol. 40, No. 6, 2002, pp. 1155–1163. doi:https://doi.org/10.2514/2.1765 LinkGoogle Scholar[32] Nielsen E. J. and Diskin B., "Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic Overset Unstructured Grids," AIAA Journal, Vol. 51, No. 6, 2013, pp. 1355–1373. doi:https://doi.org/10.2514/1.J051859 LinkGoogle Scholar[33] Vatsa V. N., Carpenter M. H. and Lockard D. P., "Re-Evaluation of an Optimized Second Order Backward Difference (BDF2OPT) Scheme for Unsteady Flow Applications," Proceedings of the 48th AIAA Aerospace Sciences Meeting, AIAA Paper 2010-0122, 2010. doi:https://doi.org/10.2514/6.2010-122 LinkGoogle Scholar[34] Bisplinghoff R. L., Ashley H. and Halfman R. L., Aeroelasticity, Dover Books on Aeronautical Engineering Series, Dover Publ., Mineola, NY, 1996. Google Scholar[35] Bathe K.-J., Finite Element Procedures, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1996. Google Scholar Previous article FiguresReferencesRelatedDetailsCited byModel Parameter Estimation Method on Multichannel Structural Response from Turbulence Flutter TestInternational Journal of Aerospace Engineering, Vol. 2022Aerothermoelastic Analysis and Optimization of Stiffened Thin-Walled StructuresLenard J. Halim, Sejal Sahu, Graeme Kennedy and Marilyn J. Smith29 December 2021Multimodal Estimation of Sine Dwell Vibrational Responses from Aeroelastic Flutter Flight Tests1 November 2021 | Aerospace, Vol. 8, No. 11Dynamic instability analysis of aeroelastic systems with application to aircraft wingsPhysics of Fluids, Vol. 33, No. 9Multiscale Mesh Adaptation for Transonic Aeroelastic Flutter ProblemsKevin Jacobson, Bret Stanford, Jan F. Kiviaho, Thomas A. Ozoroski , Michael A. Park and Pawel Chwalowski28 July 2021A High-Fidelity Coupling Framework for Aerothermoelastic Analysis and Adjoint-Based Gradient EvaluationLiam J. Smith, Lenard J. Halim, Graeme Kennedy and Marilyn J. Smith4 January 2021 What's Popular Volume 57, Number 8August 2019Special Section on Sensitivity Analysis for Rotorcraft Optimization CrossmarkInformationCopyright © 2019 by Graeme J. Kennedy. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeroelasticityAeronautical EngineeringAeronauticsCFD CodesComputational Fluid DynamicsEquations of Fluid DynamicsFinite Difference MethodFlow RegimesFluid DynamicsNumerical Analysis KeywordsNACA 64A010Singular Value DecompositionAerodynamic SimulationStructural ModelingFUN3DAeroelastic ModelsDynamic PressureFrequency DomainAngle of AttackNewton's MethodAcknowledgmentsThe authors gratefully acknowledge the funding provided by NASA through the Transformative Tools and Technologies program with grant number NNX15AU22A with Technical Monitor Steve Massey. The authors specifically thank Jordan Trout for his assistance in running the final aeroelastic benchmark cases. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.PDF Received2 November 2018Accepted9 May 2019Published online10 June 2019
Referência(s)