Outro Revisado por pares

Photophysics of Gaseous Aromatic Molecules: Excess Vibrational Energy Dependence of Radiationless Processes

1997; Linguagem: Inglês

10.1002/9780470133545.ch3

ISSN

1934-4570

Autores

Edward C. Lim,

Tópico(s)

Atomic and Subatomic Physics Research

Resumo

Photophysics of Gaseous Aromatic Molecules: Excess Vibrational Energy Dependence of Radiationless Processes Edward C. Lim, Edward C. Lim Department of Chemistry, The University of Akron, Akron, OH 44325Search for more papers by this author Edward C. Lim, Edward C. Lim Department of Chemistry, The University of Akron, Akron, OH 44325Search for more papers by this author Book Editor(s):Douglas C. Neckers, Douglas C. Neckers Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OhioSearch for more papers by this authorDavid H. Volman, David H. Volman Department of Chemistry, University of California, Davis, CaliforniaSearch for more papers by this authorGünther Von Bünau, Günther Von Bünau Physikalische Chemie, Universität Siegen, GermanySearch for more papers by this author First published: 01 January 1997 https://doi.org/10.1002/9780470133545.ch3Citations: 11Book Series:Advances in Photochemistry AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Intramolecular character of Sn (n ≥ 2) → S1 IC and spectral characteristics of dispersed fluorescence in collision-free molecules Excess energy dependence of radiationless transitions: theoretical considerations Excess energy dependence of radiationless transitions in molecules with nearby nπ* and ππ* states: theoretical considerations Excess energy dependence of radiationless transitions in aromatic hydrocarbons: experimental results Excess energy dependence of radiationless transitions in nitrogen heterocyclic compounds: experimental results Channel three decay in benzene Concluding remarks References See, for reviews: B. R. Henry and W. Siebrand, in Organic Molecular Photophysics, J. B. Birks, Ed., Wiley-Interscience, London, 1973, Vol. 1, p. 153; Google Scholar1b K. F. Freed, in Topics in Applied Physics, F. K. Fong, Ed., Springer-Verlag, Berlin Heidelberg, 1976, Vol. 15, p. 23; Google Scholar1c P. Avouris, W. M. Gelbart, and M. A. El-Sayed, Chem. Rev. 77, 793 (1977). 10.1021/cr60310a002 CASWeb of Science®Google Scholar M. Kasha, Faraday Discuss. Chem. Soc., 9, 14 (1950). 10.1039/df9500900014 Web of Science®Google Scholar See, for example, J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, New York, 1970. Google Scholar J. C. Hsieh, C.-S. Huang, and E. C. Lim, J. Chem. Phys., 60, 4345 (1974). 10.1063/1.1680909 CASWeb of Science®Google Scholar P. Pringsheim, Ann. Acad. Sci. Tech. Varsovie, 5, 29 (1938). Google Scholar E. C. Lim, in Photophysics and Photochemistry in the Vacuum Ultraviolet, S. P. McGlynn. G. L. Findley, and R. H. Huebner, Eds., Reidei. Dordrecht, 1985, p. 855. 10.1007/978-94-009-5269-0_24 Google Scholar See, for a review, A. Tramer and R. Voltz, in Excited States, E. C. Lim, Ed., Academic, New York, 1979, Vol. 4, p. 281. 10.1016/B978-0-12-227204-2.50009-4 Google Scholar A. Nitzan. J. Jortner, and P. M. Rentzepis, Proc. Roy. Soc. (London), A327, 367 (1972). 10.1098/rspa.1972.0051 Web of Science®Google Scholar F. Lahmani. A. Tramer, and C. Tric, J. Chem. Phys., 60, 4431 (1974). 10.1063/1.1680921 CASWeb of Science®Google Scholar See, for a review, J. Kommandeur, W. A. Majewski, W. L. Meerls, and D. W. Pratt, Annu. Rev. Phys. Chem., 38, 433 (1987). 10.1146/annurev.pc.38.100187.002245 CASWeb of Science®Google Scholar I. Yamazaki, T. Murao, T. Yamanaka, and K. Yoshihara, Faraday Discuss. Chem. Soc., 75, 395 (1983). 10.1039/dc9837500395 Web of Science®Google Scholar S. H. Lin and R. Bersohn, J. Chem. Phys., 48, 2732 (1968). 10.1063/1.1669507 CASWeb of Science®Google Scholar S. H. Lin, J. Chem. Phys., 44, 3759 (1966). 10.1063/1.1726531 Web of Science®Google Scholar S. F. Fischer, A. L. Stanford, and E. C. Lim, J. Chem. Phys., 61, 582 (1974). 10.1063/1.1681933 CASWeb of Science®Google Scholar S. F. Fischer and E. C. Lim, Chem. Phys. Lett., 26, 312 (1974). 10.1016/0009-2614(74)89038-X CASWeb of Science®Google Scholar G. S. Beddard, G. R. Fleming, O. L. J. Gijzeman, and G. Porter, Chem. Phys. Lett., 18, 481 (1973). 10.1016/0009-2614(73)80447-6 CASWeb of Science®Google Scholar T. G. Dietz, M. A. Duncan, A. C. Puiu, and R. E. Smalley, J. Phys. Chem., 86, 4026 (1982). 10.1021/j100217a028 CASWeb of Science®Google Scholar T. G. Dietz, M. A. Duncan, and R. E. Smalley, J. Chem. Phys., 76, 1227 (1982). 10.1063/1.443140 CASWeb of Science®Google Scholar S. F. Fischer and E. W. Schlag, Chem. Phys. Lett., 4, 393 (1969). 10.1016/0009-2614(69)80272-1 CASWeb of Science®Google Scholar E. J. Heller and R. C. Brown, J. Chem. Phys., 79, 3336 (1983). 10.1063/1.446235 CASWeb of Science®Google Scholar A. L. Sobolewski, Chem. Phys., 115, 469 (1987). 10.1016/0301-0104(87)80058-7 CASWeb of Science®Google Scholar M. D. Morse, A. C. Puiu, and R. E. Smalley, J. Chem. Phys., 78, 3435 (1983). 10.1063/1.445218 CASWeb of Science®Google Scholar E. C. Lim, J. Phys. Chem., 90, 6770 (1986). 10.1021/j100284a012 CASWeb of Science®Google Scholar R. M. Hochstrasser and C. A. Marzzacco, in Molecular Luminescence, E. C. Lim, Ed., Benjamin, New York, 1969, p. 631. Google Scholar A. J. Duben, L. Goodman, and M. Koyanagi, in Excited States, E. C. Lim, Ed., Academic, New York, 1974, Vol. 1, p. 295. Google Scholar See. for a review, K. K. Innes. I. G. Ross, and W. R. Moomaw, J. Mol. Spcctrosc., 132, 492 (1988). 10.1016/0022-2852(88)90343-8 CASWeb of Science®Google Scholar I. Suzuka, N. Mikami, and M. Ito, J. Mol. Spectrosc., 52, 21 (1974). 10.1016/0022-2852(74)90003-4 CASWeb of Science®Google Scholar K. Kiamogawa and M. Ito, J. Mol. Spectrosc., 60, 277 (1976). 10.1016/0022-2852(76)90132-6 Web of Science®Google Scholar N. Kanamaru and E. C. Lim, Chem. Phys. Lett., 35, 303 (1975). 10.1016/0009-2614(75)85610-7 Web of Science®Google Scholar W. H. Hennecker, A. P. Penner, W. Siebrand. and M. Z. Zgieiski, J. Chem. Phys., 69, 1884 (1978); 10.1063/1.436826 Web of Science®Google Scholar Y. Udagawa, M. Ito, I. Suzuka. W. Siebrand, and M. Z. Zgierski, Chem. Phys. Lett., 68, 258 (1979). 10.1016/0009-2614(79)87196-1 CASWeb of Science®Google Scholar W. A. Wassam, Jr., and E. C. Lim, J. Chem. Phys., 68, 433 (1978); 10.1063/1.435775 CASWeb of Science®Google Scholar J. Mol. Struct., 47, 1129 (1978). Web of Science®Google Scholar W. A. Wassam, Jr., and E. C. Lim, J. Chem. Phys., 69, 2175 (1978). 10.1063/1.436820 CASWeb of Science®Google Scholar W. Siebrand and M. Z. Zgierski, J. Chem. Phys., 75, 1230 (1981). 10.1063/1.442172 CASWeb of Science®Google Scholar W. A. Wassam, Jr., and E. C. Lim, Chem. Phys., 38, 211 (1979). 10.1016/0301-0104(79)85065-X Web of Science®Google Scholar E. C. Lim, in Excited States, E. C. Lim, Ed., Academic. New York, 1977, Vol. 3, p. 305. 10.1016/B978-0-12-227203-5.50010-X Google Scholar J. P. Byrne, E. F. McCoy, and I. G. Ross, Atist. J. Chem., 19, 1589 (1965). 10.1071/CH9651589 Google Scholar E. S. Medvedev, Khim. Fiz., 1 (1982). Google Scholar H. Hornburger, personal communication. Google Scholar C.-S Huang, J. C. Hsieh, and E. C. Lim, Chem. Pins. Lett., 28, 130 (1974). 10.1016/0009-2614(74)80033-3 CASWeb of Science®Google Scholar C.-S. Huang, J. C. Hsieh, and E. C. Lim, Chem. Phys. Lett., 37, 349 (1976). 10.1016/0009-2614(76)80230-8 CASWeb of Science®Google Scholar C.-S. Huang and E. C. Lim, J. Chem. Phys., 62, 3826 (1975). 10.1063/1.430939 CASWeb of Science®Google Scholar A. Amirav, unpublished results. Google Scholar J. C Hsieh and E. C. Lim, J. Chem. Phys., 61, 736 (1974). 10.1063/1.1681954 CASWeb of Science®Google Scholar S. Fischer, Chem. Phys. Lett., 4, 33 (1969). 10.1016/0009-2614(69)85027-X Google Scholar S. H. Lin, J. Chem. Phys., 58, 5760 (1973). 10.1063/1.1679200 CASWeb of Science®Google Scholar A. Hiraya, Y. Achiba, K. Kimura, and E. C. Lim, J. Chem. Phys., 81, 3345 (1984). 10.1063/1.447998 CASWeb of Science®Google Scholar G. Fischer and R. Naaman, Chem. Phys., 12, 267 (1967). Google Scholar B. E. Forch, S. Okajima, and E. C. Lim, Chem. Phys. Lett., 108, 311 (1984). 10.1016/0009-2614(84)85197-0 CASWeb of Science®Google Scholar J. L. Knee, L. R. Khundkar, and A. H. Zewail, J. Phys. Chem., 89, 3201 (1985). 10.1021/j100261a008 CASWeb of Science®Google Scholar S. Okajima and E. C. Lim, J. Chem. Phys., 69, 1929 (1978). 10.1063/1.436830 CASWeb of Science®Google Scholar A. Amirav and E. C. Lim, unpublished results. Google Scholar O. Sneh, A. Amirav, and O. Cheshnovsky, J. Chem. Phys., 91, 3532 (1989). 10.1063/1.456884 CASWeb of Science®Google Scholar O. Sneh and O. Cheshnovsky, Chem. Phys. Lett., 130, 53 (1986). 10.1016/0009-2614(86)80424-9 Web of Science®Google Scholar E. Villa, A. Amirav, and E. C. Lim, J. Phys. Chem., 92, 5393 (1988). 10.1021/j100330a015 CASWeb of Science®Google Scholar O. Shch, D. Dünn-Kittenplon, and O. Cheshnovsky, J. Chem. Phys., 91, 7331 (1989). 10.1063/1.457306 Web of Science®Google Scholar I. Becker and O. Cheshnovsky, J. Chem. Phys., 101, 3649 (1994). 10.1063/1.467548 CASWeb of Science®Google Scholar O. Sneh and O. Cheshnovsky, J. Chem. Phys., 96, 8095 (1992). 10.1063/1.462361 CASWeb of Science®Google Scholar W. A. Wassam, Jr., and E. C. Lim, unpublished results. Google Scholar S. L. Madej, G. D. Gillispie, and E. C. Lim, Chem. Phys., 32, 1 (1978). 10.1016/0301-0104(78)85213-6 CASWeb of Science®Google Scholar L. Goodman and H. Shull, J. Chem. Phys., 22, 1138 (1954); Google Scholar J. Chem. Phys., 27, 1388 (1957). 10.1063/1.1744012 CASWeb of Science®Google Scholar C. S. Parmenter and M. W. Schuyler, Chem. Phys. Lett., 6, 339 (1970). 10.1016/0009-2614(70)85090-4 CASWeb of Science®Google Scholar C. S. Parmenter, Adv. Chem. Phys., 22, 365 (1972). 10.1002/9780470143728.ch5 CASGoogle Scholar L. Wunsch, H. J. Neusser, and E. W. Schlag, Z. Naturforsch., 36, 1340 (1981). 10.1515/zna-1981-1213 Web of Science®Google Scholar R. B. Cundall and A. S. Davies, Trans. Faraday Soc., 62, 1151 (1966). 10.1039/tf9666201151 CASWeb of Science®Google Scholar M. A. Duncan, T. G. Dietz, M. G. Liverman, and R. E. Smalley, J. Phys. Chem., 85, 7 (1981). 10.1021/j150601a003 CASWeb of Science®Google Scholar C. E. Otis, J. L. Knee, and P. M. Johnson, J. Chem. Phys., 78, 2091 (1983). 10.1063/1.444918 CASWeb of Science®Google Scholar J. H. Callomon, J. E. Perkins, and R. Lopez-Delgado, Chem. Phvs. Lett., 13, 125 (1972). 10.1016/0009-2614(72)80059-9 CASWeb of Science®Google Scholar N. Nakashima and K. Yoshihara, J. Chem. Phys., 11, 6040 (1982). 10.1063/1.443847 Web of Science®Google Scholar H. Hornburger and J. Brand, Chem. Phys. Lett., 88, 153 (1982). 10.1016/0009-2614(82)83358-7 CASWeb of Science®Google Scholar M. Sumitani, D. V. O'Conner, Y. Takagi, N. Nakashima. K. Kamogawa, Y. Udagawa, and K. Yoshihara, Chem. Phys., 93, 359 (1985). 10.1016/0301-0104(85)87001-4 CASWeb of Science®Google Scholar V. Schubert, E. Riedie, and H. J. Neusser, J. Chem. Phys., 84, 6182 (1986). 10.1063/1.450760 CASWeb of Science®Google Scholar E. Riedie, Th. Weber, U. Schuett, H. J. Neusser, and E. W. Schlag, J. Chem. Phys., 93, 967 (1990). 10.1063/1.459123 Web of Science®Google Scholar C. E. Otis, J. L. Knee, and P. M. Johnson, J. Chem. Phys., 78, 2091 (1983). 10.1063/1.444918 CASWeb of Science®Google Scholar J. L. Knee, C. E. Otis, and P. M. Johnson, J. Chem. Phys., 81, 4455 (1984). 10.1063/1.447413 CASWeb of Science®Google Scholar S. Kato, J. Chem. Phys., 88, 3045 (1988). 10.1063/1.454731 CASWeb of Science®Google Scholar A. L. Sobolewski, C. Woywod, and W. Domcke, J. Chem. Phys., 98, 5627 (1993). 10.1063/1.464907 CASWeb of Science®Google Scholar I. J. Palmer, I. N. Ragazos, F. Bcrnadi, M. Olivucci, and M. A. Robb, J. Am. Chem. Soc., 115, 673 (1993). 10.1021/ja00055a042 CASWeb of Science®Google Scholar B. R. Smith, M. J. Bearpark, M. A. Robb, F. Bernadi, and M. Olivucci, Chem. Phys. Lett., 242, 27 (1995). 10.1016/0009-2614(95)00718-J CASWeb of Science®Google Scholar C.-S. Huang and E. C. Lim, unpublished results. Google Scholar The picosecond bulb experiments of Yoshihara and co-workers do not reveal a significant isotope effect on the threshold energy or the excess energy dependence of the channel three decay. See D. V. O'Connor, M. Sumitani, Y Takagi, N. Nakashima, K. Kamogawa, Y. Udagawa, and K. Yoshihara, Chem. Phys., 93, 373 (1985). 10.1016/0301-0104(85)87002-6 CASWeb of Science®Google Scholar H. Hornburger, H. Schröder, and J. Brand, J. Chem. Phys., 80, 3197 (1984). 10.1063/1.447073 CASWeb of Science®Google Scholar H. Hornburger, C. M. Sharp, and S. Leach, Chem. Phys., 101, 67 (1986). 10.1016/0301-0104(86)87023-9 CASWeb of Science®Google Scholar See, for example, L. D. Ziegler and B. S. Hudson, in Excited States, E. C. Lim, Ed., Academic, New York, 1982, Vol. 5, p. 42. Google Scholar See ref. [73] for a summary of the photochemistry of benzene in the gas phase. Google Scholar A. Yokoyama, X. Zhao, E. J. Hintsa, R. E. Continetti, and Y. T. Lee, J. Chcm Phys., 92, 4222 (1990). 10.1063/1.457780 CASWeb of Science®Google Scholar D. Bryce-Smith and A. Gilbert, in Rearrangements in Ground and Excited States, P. de Mayo, Ed., Academic, New York, 1980, Vol. 3, p. 349. 10.1016/B978-0-12-481303-8.50012-3 Google Scholar Citing Literature Advances in Photochemistry, Volume 23 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX