Artigo Revisado por pares

Algebraically coherent categories

2015; Masaryk University; Volume: 30; Linguagem: Inglês

ISSN

1201-561X

Autores

Alan S. Cigoli, James Richard Andrew Gray, Tim Van der Linden,

Tópico(s)

Algebraic structures and combinatorial models

Resumo

We call a finitely complete category algebraically coherent if the change-of-base functors of its fibration of points are coherent, which means that they preserve finite limits and jointly strongly epimorphic pairs of arrows. We give examples of categories satisfying this condition; for instance, coherent categories, categories of interest in the sense of Orzech, and (compact) Hausdorff algebras over a semi-abelian algebraically coherent theory. We study equivalent conditions in the context of semi-abelian categories, as well as some of its consequences: including amongst others, strong protomodularity, and normality of Higgins commutators for normal subobjects, and in the varietal case, fibre-wise algebraic cartesian closedness.

Referência(s)