Artigo Acesso aberto

Semigrupos cuánticos de Markov: pasado, presente y futuro

2017; Volume: 21; Issue: 1 Sup Linguagem: Espanhol

10.22579/20112629.427

ISSN

2011-2629

Autores

Julián Andrés Agredo Echeverry,

Tópico(s)

Advanced Operator Algebra Research

Resumo

Los semigrupos cuánticos de Markov (SCM) son una extensión no conmutativa de los semigrupos de Markov definidos en probabilidad clásica. Ellos representan una evolución sin memoria de un sistema microscopico acorde a las leyes de la física cuántica y a la estructura de los sistemas cuánticos abiertos. Esto significa que la dinámica reducida del sistema principal es descrita por un espacio de Hilbert separable complejo ???? por medio de un semigrupo ????=(????t)t≥0, el cual actúa sobre una subálgebra de von Neumann ???? del álgebra ????(????) de todos los operadores lineales acotados definidos en ????. Por simplicidad, algunas veces asumiremos que ????=????(????). El semigrupo ???? corresponde al cuadro de Heisenberg en el sentido que dado cualquier observable x, ????t(x) describe su evolución en el tiempo t. De esta forma, dada una matriz de densidad p, su dinámica (cuadro de Schrödinger) es dada por el semigrupo predual ????*t(ρ) , donde tr(ρ????t(x))=tr(????*t(ρ)x), tr(⋅) denota la operación traza. En este trabajo ofrecemos una exposición de varios resultados básicos sobre SCM. Además discutimos aplicaciones de SCM en teoría de la información cuántica y computación cuántica.

Referência(s)