TRIPLE CANONICAL SURFACES OF MINIMAL DEGREE
2000; World Scientific; Volume: 11; Issue: 04 Linguagem: Italiano
10.1142/s0129167x00000271
ISSN1793-6519
AutoresMargarida Mendes Lopes, Rita Pardini,
Tópico(s)Advanced Differential Equations and Dynamical Systems
ResumoInternational Journal of MathematicsVol. 11, No. 04, pp. 553-578 (2000) No AccessTRIPLE CANONICAL SURFACES OF MINIMAL DEGREEMARGARIDA MENDES LOPES and RITA PARDINIMARGARIDA MENDES LOPESCMAF, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal and RITA PARDINIDipartimento di Matematica, Università di Pisa, Via Buonarroti 2, 56127 Pisa, Italyhttps://doi.org/10.1142/S0129167X00000271Cited by:7 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail FiguresReferencesRelatedDetailsCited By 7Surfaces of general type with K2=2χ−1Caryn Werner1 Apr 2015 | Kyoto Journal of Mathematics, Vol. 55, No. 1The moduli space of even surfaces of general type with K2=8 , pg=4 and q=0Fabrizio Catanese, Wenfei Liu and Roberto Pignatelli1 Jun 2014 | Journal de Mathématiques Pures et Appliquées, Vol. 101, No. 6Certain algebraic surfaces with Eisenbud-Harris general fibration of genus 4Tomokuni Takahashi29 November 2012 | Mathematische Nachrichten, Vol. 286, No. 4Surfaces with $${K^2=2\mathcal{X}-2}$$ and p g ≥ 5María Martí Sánchez8 April 2010 | Geometriae Dedicata, Vol. 150, No. 1On the canonical rings of covers of surfaces of minimal degreeFrancisco Gallego and Bangere Purnaprajna19 March 2003 | Transactions of the American Mathematical Society, Vol. 355, No. 7Triple Canonical Covers of Varieties of Minimal DegreeFrancisco Javier Gallego and Bangere P. Purnaprajna1 Jan 2003Complex Surfaces of General Type: Some Recent ProgressIngrid C. Bauer, Fabrizio Catanese and Roberto Pignatelli Recommended Vol. 11, No. 04 Metrics History Received 25 June 1998 Revised 11 August 1999 PDF download
Referência(s)