Artigo Acesso aberto Revisado por pares

The Julia-Carathéodory theorem on the bidisk revisited

2017; Birkhäuser; Volume: 83; Issue: 1-2 Linguagem: Inglês

10.14232/actasm-016-311-x

ISSN

2064-8316

Autores

John E. McCarthy, J. E. Pascoe,

Tópico(s)

Mathematics and Applications

Resumo

The Julia quotient measures the ratio of the distance of a function value from the boundary to the distance from the boundary.The Julia-Carathéodory theorem on the bidisk states that if the Julia quotient is bounded along some sequence of nontangential approach to some point in the torus, the function must have directional derivatives in all directions pointing into the bidisk.The directional derivative, however, need not be a linear function of the direction in that case.In this note, we show that if the Julia quotient is uniformly bounded along every sequence of nontangential approach, the function must have a linear directional derivative.Additionally, we analyze a weaker condition, corresponding to being Lipschitz near the boundary, which implies the existence of a linear directional derivative for rational functions.

Referência(s)