Artigo Revisado por pares

Causality and Statistical Learning Counterfactuals and Causal Inference: Methods and Principles for Social Research . By Stephen L. Morgan and Christopher Winship. New York: Cambridge University Press, 2007. Pp. xiii+319. Causality: Models, Reasoning, and Inference , 2d ed. By Judea Pearl. Cambridge: Cambridge University Press, 2009. Pp. xix+464. Causal Models: How People Think About the World and Its Alternatives . By Steven A. Sloman. Oxford: Oxford University Press, 2005. Pp. …

2011; University of Chicago Press; Volume: 117; Issue: 3 Linguagem: Inglês

10.1086/662659

ISSN

1537-5390

Autores

Andrew Gelman,

Tópico(s)

Statistical Methods and Inference

Resumo

Previous articleNext article No AccessReview EssayCausality and Statistical Learning1 Counterfactuals and Causal Inference: Methods and Principles for Social Research. By Stephen L. Morgan and Christopher Winship. New York: Cambridge University Press, 2007. Pp. xiii+319. Causality: Models, Reasoning, and Inference, 2d ed. By Judea Pearl. Cambridge: Cambridge University Press, 2009. Pp. xix+464. Causal Models: How People Think About the World and Its Alternatives. By Steven A. Sloman. Oxford: Oxford University Press, 2005. Pp. xi+212.Andrew GelmanAndrew GelmanColumbia University Search for more articles by this author PDFPDF PLUSFull Text Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by American Journal of Sociology Volume 117, Number 3November 2011 Article DOIhttps://doi.org/10.1086/662659 Views: 1073Total views on this site Citations: 36Citations are reported from Crossref © 2011 by The University of Chicago. All rights reserved.PDF download Crossref reports the following articles citing this article:Somi Kim, Hochen Yoo, Jaeyoung Choi Effects of Charge Traps on Hysteresis in Organic Field-Effect Transistors and Their Charge Trap Cause Analysis through Causal Inference Techniques, Sensors 23, no.44 (Feb 2023): 2265.https://doi.org/10.3390/s23042265Akisato Suzuki Uncertainty in grid data: a theory and comprehensive robustness test, Quality & Quantity 567 (Nov 2022).https://doi.org/10.1007/s11135-022-01555-xAndré de Abreu Saraiva Monteiro Alves, Marcelo Pereira Duarte, Fernando Manuel Pereira de Oliveira Carvalho A Perspective on Administrative Distance: Theoretical Development and Measurement, SAGE Open 12, no.44 (Dec 2022): 215824402211446.https://doi.org/10.1177/21582440221144613 References, (Feb 2022): 127–148.https://doi.org/10.1002/9781119704492.biblioChristoph F. Kurz Augmented Inverse Probability Weighting and the Double Robustness Property, Medical Decision Making 42, no.22 (Jul 2021): 156–167.https://doi.org/10.1177/0272989X211027181Edoardo Datteri The creation of phenomena in interactive biorobotics, Biological Cybernetics 115, no.66 (Oct 2021): 629–642.https://doi.org/10.1007/s00422-021-00900-xWajid Ali, Wanli Zuo, Rahman Ali, Xianglin Zuo, Gohar Rahman Causality Mining in Natural Languages Using Machine and Deep Learning Techniques: A Survey, Applied Sciences 11, no.2121 (Oct 2021): 10064.https://doi.org/10.3390/app112110064Gianluca Manzo, Lucas Sage Causality, (Oct 2021): 1–10.https://doi.org/10.1002/9781405165518.wbeos1819Ruocheng Guo, Lu Cheng, Jundong Li, P. Richard Hahn, Huan Liu A Survey of Learning Causality with Data, ACM Computing Surveys 53, no.44 (Jul 2020): 1–37.https://doi.org/10.1145/3397269Nir Rotem, Gad Yair, Elad Shustak Dropping out of master's degrees: objective predictors and subjective reasons, Higher Education Research & Development 40, no.55 (Jul 2020): 1070–1084.https://doi.org/10.1080/07294360.2020.1799951Jake M. Hofman, Duncan J. Watts, Susan Athey, Filiz Garip, Thomas L. Griffiths, Jon Kleinberg, Helen Margetts, Sendhil Mullainathan, Matthew J. Salganik, Simine Vazire, Alessandro Vespignani, Tal Yarkoni Integrating explanation and prediction in computational social science, Nature 595, no.78667866 (Jun 2021): 181–188.https://doi.org/10.1038/s41586-021-03659-0Martijn J.L. Bours Tutorial: A nontechnical explanation of the counterfactual definition of effect modification and interaction, Journal of Clinical Epidemiology 134 (Jun 2021): 113–124.https://doi.org/10.1016/j.jclinepi.2021.01.022Nir Rotem, Gad Yair, Elad Shustak Open the gates wider: affirmative action and dropping out, Higher Education 81, no.33 (Jun 2020): 551–566.https://doi.org/10.1007/s10734-020-00556-9Ana Rita Nogueira, João Gama, Carlos Abreu Ferreira Causal discovery in machine learning: Theories and applications, Journal of Dynamics & Games 8, no.33 (Jan 2021): 203.https://doi.org/10.3934/jdg.2021008Riccardo Guidi, Lorenzo Maraviglia The Antecedents to Volunteering in Italy: Toward a Complexity-Driven Perspective, (Jul 2021): 243–265.https://doi.org/10.1007/978-3-030-70546-6_10Guido W. Imbens Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics, Journal of Economic Literature 58, no.44 (Dec 2020): 1129–1179.https://doi.org/10.1257/jel.20191597Ellen L. Hamaker, Jeroen D. Mulder, Marinus H. van IJzendoorn Description, prediction and causation: Methodological challenges of studying child and adolescent development, Developmental Cognitive Neuroscience 46 (Dec 2020): 100867.https://doi.org/10.1016/j.dcn.2020.100867Benjamin L. Spivak, Stephane M. Shepherd Machine learning and forensic risk assessment: new frontiers, The Journal of Forensic Psychiatry & Psychology 31, no.44 (Jun 2020): 571–581.https://doi.org/10.1080/14789949.2020.1779783Emilio Lehoucq, Whitney K. Taylor Conceptualizing Legal Mobilization: How Should We Understand the Deployment of Legal Strategies?, Law & Social Inquiry 45, no.11 (Oct 2019): 166–193.https://doi.org/10.1017/lsi.2019.59Catherine R Lesko, Alexander P Keil, Jessie K Edwards , American Journal of Epidemiology 189, no.66 ( 2020): 511.https://doi.org/10.1093/aje/kwaa030Carly R. Knight, Isaac Ariail Reed Meaning and Modularity: The Multivalence of "Mechanism" in Sociological Explanation, Sociological Theory 37, no.33 (Aug 2019): 234–256.https://doi.org/10.1177/0735275119869969NADJA WEHL The (ir)relevance of unemployment for labour market policy attitudes and welfare state attitudes, European Journal of Political Research 58, no.11 (Feb 2019): 141–162.https://doi.org/10.1111/1475-6765.12274Mukesh Dalal, Amy Sliva, David Blumstein Complex Causality: Computational Formalisms, Mental Models, and Objective Truth, (Jun 2017): 108–120.https://doi.org/10.1007/978-3-319-60747-4_11Michael Manville, Taner Osman Motivations for Growth Revolts: Discretion and Pretext as Sources of Development Conflict, City & Community 16, no.11 (Nov 2020): 66–85.https://doi.org/10.1111/cico.12223Marie-Catherine de Marneffe, Christopher Potts Developing Linguistic Theories Using Annotated Corpora, (Jun 2017): 411–438.https://doi.org/10.1007/978-94-024-0881-2_16Sander Greenland For and Against Methodologies: Some Perspectives on Recent Causal and Statistical Inference Debates, European Journal of Epidemiology 32, no.11 (Feb 2017): 3–20.https://doi.org/10.1007/s10654-017-0230-6Addis G. Birhanu, Alfonso Gambardella, Giovanni Valentini Bribery and investment: Firm-level evidence from Africa and Latin America, Strategic Management Journal 37, no.99 (Sep 2015): 1865–1877.https://doi.org/10.1002/smj.2431Gerald Young Statistical Concepts and Networks in Causality, (May 2016): 121–147.https://doi.org/10.1007/978-3-319-24094-7_6Holger Spamann Empirical Comparative Law, Annual Review of Law and Social Science 11, no.11 (Nov 2015): 131–153.https://doi.org/10.1146/annurev-lawsocsci-110413-030807Sharique Hasan, Surendrakumar Bagde Peers and Network Growth: Evidence from a Natural Experiment, Management Science 61, no.1010 (Oct 2015): 2536–2547.https://doi.org/10.1287/mnsc.2014.2109Thomas B. Pepinsky Interpreting Ethnicity and Urbanization in Malaysia's 2013 General Election, Journal of East Asian Studies 15, no.22 (May 2016): 199–226.https://doi.org/10.1017/S1598240800009346Peng Ding, Luke W. Miratrix To Adjust or Not to Adjust? Sensitivity Analysis of M-Bias and Butterfly-Bias, Journal of Causal Inference 3, no.11 (Mar 2015): 41–57.https://doi.org/10.1515/jci-2013-0021Vibeke Lehmann Nielsen Differences in Male and Female Employees' Personal Attributes? Myth or a Reasonable Assumption: Even Within Professions?, Gender Issues 31, no.3-43-4 (May 2014): 163–184.https://doi.org/10.1007/s12147-014-9123-0Birgit Susanne Lehner, Julia Jung, Brigitte Stieler-Lorenz, Anika Nitzsche, Elke Driller, Jürgen Wasem, Holger Pfaff Psychosocial factors in the information and communication technology sector, Management Decision 51, no.99 (Nov 2013): 1878–1892.https://doi.org/10.1108/MD-12-2012-0876Marius Kloft Kernel-Based Machine Learning with Multiple Sources of Information, it - Information Technology 55, no.22 (Apr 2013): 76–80.https://doi.org/10.1524/itit.2013.1001John Gerring Mere Description, British Journal of Political Science 42, no.44 (May 2012): 721–746.https://doi.org/10.1017/S0007123412000130

Referência(s)
Altmetric
PlumX