Optimal Attitude Sensors Placement for a Solar Power Satellite Considering Control–Structure Interaction
2019; American Institute of Aeronautics and Astronautics; Volume: 57; Issue: 10 Linguagem: Inglês
10.2514/1.j058570
ISSN1533-385X
AutoresKaiming Zhang, S. Felix Wu, Yuliang Liu, Zhigang Wu,
Tópico(s)Spacecraft Design and Technology
ResumoNo AccessTechnical NotesOptimal Attitude Sensors Placement for a Solar Power Satellite Considering Control–Structure InteractionKaiming Zhang, Shunan Wu, Yuliang Liu and Zhigang WuKaiming ZhangDalian University of Technology, 116024 Dalian, People's Republic of China, Shunan WuDalian University of Technology, 116024 Dalian, People's Republic of China, Yuliang LiuDalian University of Technology, 116024 Dalian, People's Republic of China and Zhigang WuDalian University of Technology, 116024 Dalian, People's Republic of ChinaPublished Online:5 Aug 2019https://doi.org/10.2514/1.J058570SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Glaser P. E., "Power from the Sun: Its Future," Science, Vol. 162, No. 3856, 1968, pp. 857–861. doi:https://doi.org/10.1126/science.162.3856.857 CrossrefGoogle Scholar[2] Hyland D. C., Junkins J. L. and Longman R. W., "Active Control Technology for Large Space Structures," Journal of Guidance, Control, and Dynamics, Vol. 16, No. 5, 1993, pp. 801–821. doi:https://doi.org/10.2514/3.21087 LinkGoogle Scholar[3] Hou X., Wang L., Zhang X. and Zhou L., "Concept Design on Multi-Rotary Joints SPS," Journal of Astronautics, Vol. 11, No. 11, 2015, pp. 1332–1338. doi:https://doi.org/10.3873/j.issn.1000-1328.2015.11.016 Google Scholar[4] Wie B. and Roithmayr C. M., "Attitude and Orbit Control of a Very Large Geostationary Solar Power Satellite," Journal of Guidance, Control, and Dynamics, Vol. 28, No. 3, 2005, pp. 439–451. doi:https://doi.org/10.2514/1.6813 LinkGoogle Scholar[5] Glaese J. R. and McDonald E. J., "Space Solar Power Multi-Body Dynamics and Controls, Concepts for the Integrated Symmetrical Concentrator Configuration," NASA TR-NAS8-00151, 2000. Google Scholar[6] McNally I. J., Scheeres D. J. and Radice G., "Attitude Dynamics of Large Geosynchronous Solar Power Satellites," AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2014-4123, Aug. 2014. doi: https://doi.org/10.2514/6.2014-4123 LinkGoogle Scholar[7] Wu S., Zhang K., Peng H., Wu Z. and Radice G., "Robust Optimal Sun-Pointing Control of a Large Solar Power Satellite," Acta Astronautica, Vol. 127, Oct.–Nov. 2016, pp. 226–234. doi:https://doi.org/10.1016/j.actaastro.2016.05.019 CrossrefGoogle Scholar[8] Li Q., Deng Z., Zhang K. and Wang B., "Precise Attitude Control of Multirotary-Joint Solar-Power Satellite," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 6, 2018, pp. 1435–1442. doi:https://doi.org/10.2514/1.G003309 LinkGoogle Scholar[9] Li Q., Deng Z., Zhang K. and Huang H., "Unified Modeling Method for Large Space Structures Using Absolute Nodal Coordinate," AIAA Journal, Vol. 56, No. 10, 2018, pp. 4146–4157. doi:https://doi.org/10.2514/1.J057117 LinkGoogle Scholar[10] Chiang D. and Lin C., "Identification of Modal Parameters from Nonstationary Ambient Vibration Data Using Correlation Technique," AIAA Journal, Vol. 46, No. 11, 2008, pp. 2752–2759. doi:https://doi.org/10.2514/1.34272 LinkGoogle Scholar[11] Yang C., Lu Z., Yang Z. and Liang K., "Parameter Identification for Structural Dynamics Based on Interval Analysis Algorithm," Acta Astronautica, Vol. 145, April 2018, pp. 131–140. doi:https://doi.org/10.1016/j.actaastro.2018.01.038 CrossrefGoogle Scholar[12] Jia S., Jia Y., Xu S. and Hu Q., "Optimal Placement of Sensors and Actuators for Gyroelastic Body Using Genetic Algorithms," AIAA Journal, Vol. 54, No. 8, 2016, pp. 2472–2488. doi:https://doi.org/10.2514/1.J054696 LinkGoogle Scholar[13] Jia S. and Shan J., "Optimal Actuator Placement for Constrained Gyroelastic Beam Considering Control Spillover," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 9, 2018, pp. 2073–2081. doi:https://doi.org/10.2514/1.G003560 LinkGoogle Scholar[14] Sheng L. Z. and Kapania R. K., "Extensive Experiments on Genetic Algorithms for the Optimization of Piezoelectric Actuator Locations," AIAA Journal, Vol. 44, No. 12, 2006, pp. 2904–2918. doi:https://doi.org/10.2514/1.19181 LinkGoogle Scholar[15] Bruant I., Gallimard L. and Nikoukar S., "Optimal Piezoelectric Actuator and Sensor Location for Active Vibration Control Using Genetic Algorithm," Journal of Sound and Vibration, Vol. 329, No. 10, 2010, pp. 1615–1635. doi:https://doi.org/10.1016/j.jsv.2009.12.001 CrossrefGoogle Scholar[16] Clark R. and Fuller C., "Optimal Placement of Piezoelectric Actuators and Polyvinylidene Fluoride Error Sensors in Active Structural Acoustic Control Approaches," The Journal of the Acoustical Society of America, Vol. 92, No. 3, 1992, pp. 1521–1533. doi:https://doi.org/10.1121/1.403944 CrossrefGoogle Scholar[17] Yang C., Zhang X., Huang X., Cheng Z., Zhang X. and Hou X., "Optimal Sensor Placement for Deployable Antenna Module Health Monitoring in SSPS Using Genetic Algorithm," Acta Astronautica, Vol. 140, Nov. 2017, pp. 213–224. doi:https://doi.org/10.1016/j.actaastro.2017.08.025 CrossrefGoogle Scholar[18] Yang C., Lu Z. and Yang Z., "Robust Optimal Sensor Placement for Uncertain Structures with Interval Parameters," IEEE Sensors Journal, Vol. 18, No. 5, 2018, pp. 2031–2041. doi:https://doi.org/10.1109/JSEN.2018.2789523 CrossrefGoogle Scholar[19] Yang C., "Sensor Placement for Structural Health Monitoring Using Hybrid Optimization Algorithm Based on Sensor Distribution Index and FE Grids," Structural Control and Health Monitoring, Vol. 25, No. 6, 2018, Paper e2160. doi:https://doi.org/10.1002/stc.v25.6 Google Scholar[20] Joshi S. M., Control of Large Flexible Space Structures, Springer–Verlag, Berlin, 1989, Chap. 1. doi:https://doi.org/10.1007/BFb0042077 CrossrefGoogle Scholar[21] Zhou K., Doyle J. C. and Glover K., Robust and Optimal Control, Prentice Hall, Upper Saddle River, NJ, 1996, Chap. 4. Google Scholar Previous article FiguresReferencesRelatedDetailsCited byRecursive identification of inertia tensor parameters of space solar power satellite based on distributed placement of attitude sensorsAerospace Science and Technology, Vol. 130Optimal Attitude Sensor Placement and Modal Frequency Identification of Large Space StructureMultibody dynamics and robust attitude control of a MW-level solar power satelliteAerospace Science and Technology, Vol. 111Dynamics and on-orbit assembly strategies for an orb-shaped solar arrayActa Astronautica, Vol. 178 What's Popular Volume 57, Number 10October 2019Special Section on Asymptotic Analyses, Dynamics, and Aeroelasticity CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAvionicsControl SystemsControl TheoryGuidance, Navigation, and Control SystemsSatellitesSensorsSpace SystemsSpace Systems and VehiclesSpacecraftsTransducers KeywordsSensorsSolar Power SatelliteAttitude Control SystemFinite Element ModelingDamping RatioLarge Space StructuresClosed Loop SystemGenetic AlgorithmPropellantFinite Element SoftwareAcknowledgmentsThis work was supported by the National Natural Science Foundation of China under Grant Nos. 11432010 and 11572069 and High-level Talent Innovation Support Program (2017RQ001).PDF Received23 April 2019Accepted5 July 2019Published online5 August 2019
Referência(s)