Artigo Revisado por pares

Optimal Interplanetary Trajectories for Spinning Solar Sails Under Sail-Shape Control

2019; American Institute of Aeronautics and Astronautics; Volume: 42; Issue: 11 Linguagem: Inglês

10.2514/1.g003776

ISSN

1533-3884

Autores

Yuki Takao, Osamu Mori, Jun’ichiro Kawaguchi,

Tópico(s)

Astro and Planetary Science

Resumo

No AccessEngineering NotesOptimal Interplanetary Trajectories for Spinning Solar Sails Under Sail-Shape ControlYuki Takao, Osamu Mori and Jun’ichiro KawaguchiYuki TakaoUniversity of Tokyo, Tokyo 113-8654, Japan*Ph.D. Student, Department of Aeronautics and Astronautics; . Student Member AIAA.Search for more papers by this author, Osamu MoriJapan Aerospace Exploration Agency, Sagamihara 252-5210, Japan†Assistant Professor, Department of Space Flight Systems, Institute of Space and Astronautical Science, Kanagawa; . Member AIAA.Search for more papers by this author and Jun’ichiro KawaguchiJapan Aerospace Exploration Agency, Sagamihara 252-5210, Japan‡Professor, Department of Space Flight Systems, Institute of Space and Astronautical Science, Kanagawa; . Member AIAA.Search for more papers by this authorPublished Online:12 Aug 2019https://doi.org/10.2514/1.G003776SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Sauer C., “Optimum Solar-Sail Interplanetary Trajectories,” AIAA/AAS Astrodynamics Conference, AIAA Paper 1976-0792, 1976. doi:https://doi.org/10.2514/6.1976-792 LinkGoogle Scholar[2] Colasurdo G. and Casalino L., “Optimal Control Law for Interplanetary Trajectories with Nonideal Solar Sail,” Journal of Spacecraft and Rockets, Vol. 40, No. 2, 2003, pp. 260–265. doi:https://doi.org/10.2514/2.3941 LinkGoogle Scholar[3] Mengali G. and Quarta A. A., “Optimal Three-Dimensional Interplanetary Rendezvous Using Non-Ideal Solar Sail,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 1, 2005, pp. 173–177. doi:https://doi.org/10.2514/1.8325 LinkGoogle Scholar[4] Otten M. and McInnes C. R., “Near Minimum-Time Trajectories for Solar Sails,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 3, 2001, pp. 632–634. doi:https://doi.org/10.2514/2.4758 LinkGoogle Scholar[5] Dachwald B., “Optimization of Interplanetary Solar Sailcraft Trajectories Using Evolutionary Neurocontrol,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 1, 2004, pp. 66–72. doi:https://doi.org/10.2514/1.9286 LinkGoogle Scholar[6] Hughes G. W. and McInnes C. R., “Solar Sail Hybrid Trajectory Optimization for Non-Keplerian Orbit Transfers,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 3, 2002, pp. 602–604. doi:https://doi.org/10.2514/2.4924 LinkGoogle Scholar[7] Dachwald B., “Optimal Solar Sail Trajectories for Missions to the Outer Solar System,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 6, 2005, pp. 1187–1193. doi:https://doi.org/10.2514/1.13301 LinkGoogle Scholar[8] Peloni A., Ceriotti M. and Dachwald B., “Solar-Sail Trajectory Design for a Multiple Near-Earth-Asteroid Rendezvous Mission,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 12, 2016, pp. 2712–2724. doi:https://doi.org/10.2514/1.G000470 LinkGoogle Scholar[9] Tsuda Y., Mori O., Funase R., Sawada H., Yamamoto T., Saiki T., Endo T. and Kawaguchi J., “Flight Status of IKAROS Deep Space Solar Sail Demonstrator,” Acta Astronautica, Vol. 69, No. 9, 2011, pp. 833–840. doi:https://doi.org/10.1016/j.actaastro.2011.06.005 CrossrefGoogle Scholar[10] Mori O., Matsumoto J., Chujo T., Kato H., Saiki T., Kawaguchi J., Kawasaki S., Okada T., Iwata T. and Takao Y., “System Designing of Solar Power Sail-craft for Jupiter Trojan Asteroid Exploration,” Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, Vol. 16, No. 4, 2018, pp. 328–333. doi:https://doi.org/10.2322/tastj.16.328 CrossrefGoogle Scholar[11] Mori O., Funase R., Shirasawa Y., Mimasu Y., Tsuda Y., Saiki T., Yano H., Matsuura S., Yonetoku D. and Kawaguchi J., “IKAROS Extended Operation for Advanced Solar Power Sail Mission,” Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, Vol. 12, No. ists29, 2014, pp. Tk_19–Tk_24. doi:https://doi.org/10.2322/tastj.12.Tk_19 Google Scholar[12] Saiki T., Tsuda Y., Funase R., Mimasu Y. and Shirasawa Y., “Attitude Operation Results of Solar Sail Demonstrator IKAROS,” Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, Vol. 10, No. ists28, 2012, pp. To_4_1–To_4_6. doi:https://doi.org/10.2322/tastj.10.To_4_1 CrossrefGoogle Scholar[13] Ceriotti M., Harkness P. and McRobb M., “Variable-Geometry Solar Sailing: The Possibilities of the Quasi-Rhombic Pyramid,” Advances in Solar Sailing, Springer, New York, 2014, pp. 899–919. doi:https://doi.org/10.1007/978-3-642-34907-2 CrossrefGoogle Scholar[14] Takao Y., Chujo T., Mori O. and Kawaguchi J., “Active Shape Control of Spinning Membrane Space Structures and its Application to Solar Sailing,” Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 61, No. 3, 2018, pp. 119–131. doi:https://doi.org/10.2322/tjsass.61.119 CrossrefGoogle Scholar[15] Hargraves C. R. and Paris S. W., “Direct Trajectory Optimization Using Nonlinear Programming and Collocation,” Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 338–342. doi:https://doi.org/10.2514/3.20223 LinkGoogle Scholar[16] Tang S. and Conway B. A., “Optimization of Low-Thrust Interplanetary Trajectories Using Collocation and Nonlinear Programming,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 3, 1995, pp. 599–604. doi:https://doi.org/10.2514/3.21429 LinkGoogle Scholar[17] McInnes C. R., Solar Sailing: Technology, Dynamics and Mission Applications, Springer Science and Business Media, New York, 2004, Chap. 2. Google Scholar[18] Ono G., Mimasu Y. and Kawaguchi J., “Attitude Optimization of a Spinning Solar Sail via Spin-Rate Control to Accelerate in Tangential Direction,” Proceedings of the 23rd AAS/AIAA Space Flight Mechanics Meeting, Vol. 148, Univelt, Inc., San Diego, CA, 2013, pp. 2583–2596. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byOne-Winged Momentum-Biased Solar Sail: A New Methodology for Propellantless Attitude ControlYuki Takao 27 February 2023 | Journal of Guidance, Control, and Dynamics, Vol. 0, No. 0Design and application of solar sailing: A review on key technologiesChinese Journal of Aeronautics, Vol. 11Solar sail attitude control using shape variation of boomsChinese Journal of Aeronautics, Vol. 35, No. 10Propellant-free attitude control of solar sails with variable-shape mechanismsActa Astronautica, Vol. 193Solar Sail Shape Control Using Shape Memory Alloy Wires for Application to Solar Radiation Pressure-Based Attitude ControlAEROSPACE TECHNOLOGY JAPAN, THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, Vol. 21, No. 0Three-Axes Attitude Control of Solar Sail Based on Shape Variation of Booms23 July 2021 | Aerospace, Vol. 8, No. 8 What's Popular Volume 42, Number 11November 2019 CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAstronomyCelestial MechanicsControl TheoryGuidance, Navigation, and Control SystemsKepler's Laws of Planetary MotionOptimal Control TheoryPlanetary Science and ExplorationPlanetsSpace AgenciesSpace MissionsSpace Science and TechnologySpacecraft GuidanceSpacecraft Guidance and Control KeywordsLight SailsShape ControlInterplanetary TrajectoriesEarthPropellantAttitude Control SystemTrajectory OptimizationThin Film Solar CellSolar PowerNonlinear ProgrammingAcknowledgmentThis work was supported by Grants-in-Aid for Scientific Research (JP18J11615) from the Japan Society for the Promotion of Science.PDF Received26 February 2019Accepted3 July 2019Published online12 August 2019

Referência(s)