Simultaneous Scalar and Velocity Imaging in a Mach Five Boundary Layer
2019; American Institute of Aeronautics and Astronautics; Volume: 57; Issue: 11 Linguagem: Inglês
10.2514/1.j058614
ISSN1533-385X
AutoresChristopher S. Combs, Noel Clemens,
Tópico(s)Gas Dynamics and Kinetic Theory
ResumoNo AccessTechnical NotesSimultaneous Scalar and Velocity Imaging in a Mach Five Boundary LayerChristopher S. Combs and Noel T. ClemensChristopher S. CombsUniversity of Texas at San Antonio, San Antonio, Texas 78249*Dee Howard Endowed Assistant Professor, Department of Mechanical Engineering. Member AIAA.Search for more papers by this author and Noel T. ClemensUniversity of Texas at Austin, Austin, Texas 78712†Bob R. Dorsey Professor in Engineering, Department of Aerospace Engineering and Engineering Mechanics. Associate Fellow AIAA.Search for more papers by this authorPublished Online:26 Aug 2019https://doi.org/10.2514/1.J058614SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Greathouse J. S., Kirk B. S., Lillard R. P., Truong T. H., Robinson P. and Cerimele C. J., “Crew Exploration Vehicle (CEV) Crew Module Shape Selection Analysis and CEV Aeroscience Project Overview,” 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2007-0603, 2007. doi:https://doi.org/10.2514/6.2007-603 LinkGoogle Scholar[2] Smits A. J., Martin M. P. and Girimaji S., “Current Status of Basic Research in Hypersonic Turbulence,” 47th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2009-0151, 2009. doi:https://doi.org/10.2514/6.2009-151 LinkGoogle Scholar[3] Ho D. W. K., Koo J. H., Bruns M. C. and Ezekoye O. A., “A Review of Numerical and Experimental Characterization of Thermal Protection Materials—Part III. Experimental Testing,” 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2007-5773, 2007. doi:https://doi.org/10.2514/6.2007-5773 Google Scholar[4] Stogner R., Bauman P. T., Schulz K. W., Upadhyay R. and Maurente A., “Uncertainty and Parameter Sensitivity in Multiphysics Reentry Flows,” 49th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2011-0764, Jan. 2011. doi:https://doi.org/10.2514/6.2011-764 Google Scholar[5] Poreh M. and Cermak J. E., “Study of Diffusion from a Line Source in a Turbulent Boundary Layer,” International Journal of Heat and Mass Transfer, Vol. 7, No. 10, 1964, pp. 1083–1095. doi:https://doi.org/10.1016/0017-9310(64)90032-8 CrossrefGoogle Scholar[6] Gross K. P. and McKenzie R. L., “Measurements of Fluctuating Temperatures in a Supersonic Turbulent Flow Using Laser-Induced Fluorescence,” AIAA Journal, Vol. 23, No. 12, 1985, pp. 1932–1936. doi:https://doi.org/10.2514/3.9198 LinkGoogle Scholar[7] Carvin C., Debieve J. F. and Smits A. J., “The Near-Wall Temperature Profile of Turbulent Boundary Layers,” 26th AIAA Aerospace Sciences Meeting, AIAA Paper 1988-0136, Jan. 1988. doi:https://doi.org/10.2514/6.1988-136 LinkGoogle Scholar[8] Fletcher D. G. and McKenzie R. L., “Single-Pulse Measurements of Density and Temperature in a Turbulent, Supersonic Flow Using UV Laser Spectroscopy,” Optics Letters, Vol. 17, No. 22, 1992, pp. 1614–1616. doi:https://doi.org/10.1364/OL.17.001614 CrossrefGoogle Scholar[9] Palma P. C., Mallinson S. G., O’Byrne S. B., Danehy P. M. and Hillier R., “Temperature Measurements in a Hypersonic Boundary Layer Using Planar Laser-Induced Fluorescence,” AIAA Journal, Vol. 38, No. 9, 2000, pp. 1769–1772. doi:https://doi.org/10.2514/2.1172 LinkGoogle Scholar[10] Auvity B., Etz M. R. and Smits A. J., “Effects of Transverse Helium Injection on Hypersonic Boundary Layers,” Physics of Fluids, Vol. 13, No. 10, 2001, pp. 3025–3032. doi:https://doi.org/10.1063/1.1401813 CrossrefGoogle Scholar[11] Su L. K. and Mungal M. G., “Simultaneous Measurements of Scalar and Velocity Field Evolution in Turbulent Crossflowing Jets,” Journal of Fluid Mechanics, Vol. 513, Aug. 2004, pp. 1–45. doi:https://doi.org/10.1017/S0022112004009401 CrossrefGoogle Scholar[12] Balakumar B. J., Orlicz G. C., Tomkins C. D. and Prestridge K. P., “Simultaneous Particle-Image Velocimetry–Planar Laser-Induced Fluorescence Measurements of Richtmyer–Meshkov Instability Growth in a Gas Curtain with and Without Reshock,” Physics of Fluids, Vol. 20, No. 12, 2008, Paper 124103. doi:https://doi.org/10.1063/1.3041705 Google Scholar[13] Melnick M. B. and Thurow B. S., “On the Relationship Between Image Intensity and Velocity in a Turbulent Boundary Layer Seeded with Smoke Particles,” Experiments in Fluids, Vol. 55, No. 2, 2014, pp. 1–15. doi:https://doi.org/10.1007/s00348-014-1681-0 CrossrefGoogle Scholar[14] Koochesfahani M., Cohn R. and MacKinnon C., “Simultaneous Whole-Field Measurements of Velocity and Concentration Fields Using a Combination of MTV and LIF,” Measurement Science and Technology, Vol. 11, No. 9, 2000, pp. 1289–1300. doi:https://doi.org/10.1088/0957-0233/11/9/306 CrossrefGoogle Scholar[15] Hjertager L. K., Hjertager B. H., Deen N. G. and Solberg T., “Measurement of Turbulent Mixing in a Confined Wake Flow Using Combined PIV and PLIF,” Canadian Journal of Chemical Engineering, Vol. 81, No. 6, 2003, pp. 1149–1158. doi:https://doi.org/10.1002/cjce.5450810604 Google Scholar[16] Hishida K. and Sakakibara J., “Combined Planar Laser-Induced Fluorescence–Particle Image Velocimetry Technique for Velocity and Temperature Fields,” Experiments in Fluids, Vol. 29, No. 7, 2000, pp. S129–S140. doi:https://doi.org/10.1007/s003480070015 Google Scholar[17] Crimaldi J. P. and Koseff J. R., “High-Resolution Measurements of the Spatial and Temporal Scalar Structure of a Turbulent Plume,” Experiments in Fluids, Vol. 31, No. 1, 2001, pp. 90–102. doi:https://doi.org/10.1007/s003480000263 Google Scholar[18] Crimaldi J. P., Wiley M. B. and Koseff J. R., “The Relationship Between Mean and Instantaneous Structure in Turbulent Passive Scalar Plumes,” Journal of Turbulence, Vol. 3, No. 14, 2002, pp. 1–24. doi:https://doi.org/10.1088/1468-5248/3/1/014 Google Scholar[19] Wagner C., Kuhn S. and von Rohr P. R., “Scalar Transport from a Point Source in Flows over Wavy Walls,” Experiments in Fluids, Vol. 43, Nos. 2–3, 2007, pp. 261–271. doi:https://doi.org/10.1007/s00348-007-0340-0 Google Scholar[20] Somandepalli V. S. R., Hou Y. X. and Mungal M. G., “Concentration Flux Measurements in a Polymer Drag-Reduced Turbulent Boundary Layer,” Journal of Fluid Mechanics, Vol. 644, Feb. 2010, pp. 281–319. doi:https://doi.org/10.1017/S0022112009992382 Google Scholar[21] Sarathi P., Gurka R., Kopp G. A. and Sullivan P. J., “A Calibration Scheme for Quantitative Concentration Measurements Using Simultaneous PIV and PLIF,” Experiments in Fluids, Vol. 52, No. 1, 2012, pp. 247–259. doi:https://doi.org/10.1007/s00348-011-1219-7 Google Scholar[22] Frank J. H., Lyons K. M. and Long M. B., “Simultaneous Scaler/Velocity Field Measurements in Turbulent Gas-Phase Flows,” Combustion and Flame, Vol. 107, No. 1, 1996, pp. 1–4. doi:https://doi.org/10.1016/0010-2180(95)00191-3 Google Scholar[23] Fajardo C. M., Smith J. D. and Sick V., “Sustained Simultaneous High-Speed Imaging of Scalar and Velocity Fields Using a Single Laser,” Applied Physics B, Vol. 85, No. 1, 2006, pp. 25–30. doi:https://doi.org/10.1007/s00340-006-2368-x CrossrefGoogle Scholar[24] Lochman B., “Technique for Imaging Ablation-Products Transported in High-Speed Boundary Layers by Using Naphthalene Planar Laser-Induced Fluorescence,” M.S. Thesis, Univ. of Texas at Austin, Austin, TX, 2010. Google Scholar[25] Buxton O. R. H., Lochman B. J., Sharma M. and Clemens N. T., “Simultaneous PIV and PLIF Imaging of Low-Temperature Ablation in a Mach 5 Turbulent Boundary Layer,” 50th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2012-0440, Jan. 2012. doi:https://doi.org/10.2514/6.2012-0440 LinkGoogle Scholar[26] Combs C. S., Clemens N. T. and Danehy P. M., “Development of Naphthalene PLIF for Visualizing Ablation Products from a Space Capsule Heat Shield,” 52nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2014-1152, Jan. 2014. doi:https://doi.org/10.2514/6.2014-1152 LinkGoogle Scholar[27] Combs C. S., Clemens N. T. and Danehy P. M., “Visualization of Capsule Reentry Vehicle Heat Shield Ablation Using Naphthalene PLIF,” 17th International Symposia on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July 2014. Google Scholar[28] Combs C. S. and Clemens N. T., “Measurements of Ablation-Products Transport in a Mach 5 Turbulent Boundary Layer Using Naphthalene PLIF,” 53rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2015-1912, Jan. 2015. doi:https://doi.org/10.2514/6.2015-1912 LinkGoogle Scholar[29] Combs C. S., “Quantitative Measurements of Ablation-Products Transport in Supersonic Turbulent Flows Using Planar Laser-Induced Fluorescence,” Ph.D. Dissertation, Univ. of Texas at Austin, Austin, TX, 2015. Google Scholar[30] Combs C. S. and Clemens N. T., “Naphthalene Laser-Induced Fluorescence Measurements at Low Temperature and Pressure,” Applied Optics, Vol. 55, No. 13, 2016, pp. 3656–3669. doi:https://doi.org/10.1364/AO.55.003656 CrossrefGoogle Scholar[31] Combs C. S., Lochman B. J. and Clemens N. T., “Technique for Studying Ablation-Products Transport in Supersonic Boundary Layers by Using PLIF of Naphthalene,” Experiments in Fluids, Vol. 57, No. 89, 2016, pp. 1–14. doi:https://doi.org/10.1007/s00348-016-2179-8 Google Scholar[32] Combs C. S., Clemens N. T., Danehy P. M. and Murman S. M., “Heat Shield Ablation Visualized Using Naphthalene Planar Laser-Induced Fluorescence,” Journal of Spacecraft and Rockets, Vol. 54, No. 2, 2017, pp. 476–494. doi:https://doi.org/10.2514/1.A33669 LinkGoogle Scholar[33] Lin H., Shi-He Y., Li-Feng T., Zhi C. and Yang-Zhu Z., “Simultaneous Density and Velocity Measurements in a Supersonic Turbulent Boundary Layer,” Chinese Physics B, Vol. 22, No. 2, 2013, Paper 024704. doi:https://doi.org/10.1088/1674-1056/22/2/024704 Google Scholar[34] McClure W. B., “An Experimental Study of the Driving Mechanism and Control of the Unsteady Shock Induced Turbulent Separation in a Mach 5 Compression Corner Flow,” Ph.D. Dissertation, Univ. of Texas at Austin, Austin, TX, 1992. Google Scholar[35] Hou Y. X., “Particle Image Velocimetry Study of Shock-Induced Turbulent Boundary Layer Separation,” Ph.D. Dissertation, Univ. of Texas at Austin, Austin, TX, 2003. Google Scholar[36] Samimy M. and Lele S. K., “Motion of Particles with Inertia in a Compressible Free Shear Layer,” Physics of Fluids, Vol. 3, No. 8, 1991, pp. 1915–1923. doi:https://doi.org/10.1063/1.857921 CrossrefGoogle Scholar[37] White F. M., Viscous Fluid Flow, McGraw–Hill, New York, 2006. Google Scholar[38] Smith D. R. and Smits A. J., “Simultaneous Measurement of Velocity and Temperature Fluctuations in the Boundary Layer of a Supersonic Flow,” Experimental Thermal and Fluid Science, Vol. 7, No. 3, 1993, pp. 221–229. doi:https://doi.org/10.1016/0894-1777(93)90005-4 CrossrefGoogle Scholar[39] De Kruif C. G., Kuipers T., van Miltenburg J. C., Schaake R. C. F. and Stevens G., “The Vapour Pressure of Solid and Liquid Naphthalene,” Journal of Chemical Thermodynamics, Vol. 13, No. 11, 1981, pp. 1081–1086. doi:https://doi.org/10.1016/0021-9614(81)90006-9 CrossrefGoogle Scholar[40] Braman K., Koo H., Raman V., Upadhyay R. and Ezekoye O., “RANS Models for Scalar Transport in Ablating Compressible Boundary Layers,” 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-207, Jan. 2011. doi:https://doi.org/10.2514/6.2011-207 LinkGoogle Scholar[41] Beresh S. J., “The Effect of the Incoming Turbulent Boundary Layer on a Shock-Induced Separated Flow Using Particle Image Velocimetry,” Ph.D. Dissertation, Univ. of Texas at Austin, Austin, TX, 1999. Google Scholar[42] Van Driest E. R., “Turbulent Boundary Layer in Compressible Fluids,” Journal of Aeronautical Science, Vol. 18, No. 3, 1951, pp. 145–160. doi:https://doi.org/10.2514/8.1895 LinkGoogle Scholar[43] Unalmis O. H., “Structure of the Supersonic Turbulent Boundary Layer and Its Influence on Unsteady Separation,” Ph.D. Dissertation, Univ. of Texas at Austin, Austin, TX, 1995. Google Scholar[44] Kader B. A., “Temperature and Concentration Profiles in Fully Turbulent Boundary Layers,” International Journal of Heat and Mass Transfer, Vol. 24, No. 9, 1981, pp. 1541–1544. doi:https://doi.org/10.1016/0017-9310(81)90220-9 CrossrefGoogle Scholar[45] Kim J. and Moin P., “Transport of Passive Scalars in a Turbulent Channel Flow,” Turbulent Shear Flows, Vol. 6, 1989, pp. 85–96. doi:https://doi.org/10.1007/978-3-642-73948-4 Google Scholar[46] Kasagi N., Tomita Y. and Kuroda A., “Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow,” Journal of Heat Transfer, Vol. 114, No. 3, 1992, pp. 598–606. doi:https://doi.org/10.1115/1.2911323 CrossrefGoogle Scholar[47] Li F. C., Wang D. Z., Kawaguchi Y. and Hishida K., “Simultaneous Measurements of Velocity and Temperature Fluctuations in Thermal Boundary Layer in a Drag-Reducing Surfactant Solution Flow,” Experiments in Fluids, Vol. 36, No. 1, 2004, pp. 131–140. doi:https://doi.org/10.1007/s00348-003-0687-9 Google Scholar[48] Spina E. F., Smits A. J. and Robinson S. K., “The Physics of Supersonic Turbulent Boundary Layers,” Annual Review of Fluid Mechanics, Vol. 26, No. 1, 1994, pp. 287–319. doi:https://doi.org/10.1146/annurev.fl.26.010194.001443 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byExperimental investigation of the turbulent Schmidt number in supersonic film cooling with shock interaction27 June 2020 | Experiments in Fluids, Vol. 61, No. 7 What's Popular Volume 57, Number 11November 2019 CrossmarkInformationCopyright © 2019 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsBoundary LayersComputational Fluid DynamicsExperimental Fluid DynamicsFlow MeasurementFlow RegimesFluid DynamicsFluid Flow PropertiesFluid MechanicsVelocimetryVortex DynamicsWind Tunnels KeywordsIncompressible Turbulent Boundary LayerPlanar Laser Induced FluorescenceParticle Image VelocimetryHypersonic FlowsVelocity ProfilesDirect Numerical SimulationFluorescenceWind Tunnel TestsFreestream VelocitySchmidt NumbersAcknowledgmentThis work was supported by a NASA Office of the Chief Technologist’s Space Technology Research Fellowship Grant (No. NNX11AN55H).PDF Received1 May 2019Accepted1 August 2019Published online26 August 2019
Referência(s)