Artigo Acesso aberto Revisado por pares

Flexible filaments buckle into helicoidal shapes in strong compressional flows

2020; Nature Portfolio; Volume: 16; Issue: 6 Linguagem: Inglês

10.1038/s41567-020-0843-7

ISSN

1745-2481

Autores

Brato Chakrabarti, Yanan Liu, John LaGrone, Ricardo Cortez, Lisa Fauci, Olivia du Roure, David Saintillan, Anke Lindner,

Tópico(s)

Fluid Dynamics and Turbulent Flows

Resumo

The occurrence of coiled or helical morphologies is common in nature, from plant roots to DNA packaging into viral capsids, as well as in applications such as oil drilling processes. In many examples, chiral structures result from the buckling of a straight fibre either with intrinsic twist or to which end moments have been applied in addition to compression forces. Here, we elucidate a generic way to form regular helicoidal shapes from achiral straight filaments transported in viscous flows with free ends. Through a combination of experiments using fluorescently labelled actin filaments in microfluidic divergent flows and two distinct sets of numerical simulations, we demonstrate the robustness of helix formation. A nonlinear stability analysis is performed, and explains the emergence of such chiral structures from the nonlinear interaction of perpendicular planar buckling modes, an effect that solely requires a strong compressional flow, independent of the exact nature of the fibre or type of flow field. The fundamental mechanism for the uncovered morphological transition and characterization of the emerging conformations advance our understanding of several biological and industrial processes and can also be exploited for the controlled microfabrication of chiral objects. A general mechanism through which elastic filaments suspended in a strong compressional flow buckle and spontaneously acquire a chiral helicoidal shape is uncovered and elucidated theoretically.

Referência(s)