Artigo Acesso aberto Revisado por pares

Statement on the suitability of the BEEHAVE model for its potential use in a regulatory context and for the risk assessment of multiple stressors in honeybees at the landscape level

2015; Wiley; Volume: 13; Issue: 6 Linguagem: Inglês

10.2903/j.efsa.2015.4125

ISSN

1831-4732

Tópico(s)

Insect and Arachnid Ecology and Behavior

Resumo

EFSA JournalVolume 13, Issue 6 4125 StatementOpen Access Statement on the suitability of the BEEHAVE model for its potential use in a regulatory context and for the risk assessment of multiple stressors in honeybees at the landscape level EFSA Panel on Plant Protection Products and their Residues (PPR), EFSA Panel on Plant Protection Products and their Residues (PPR)Search for more papers by this author EFSA Panel on Plant Protection Products and their Residues (PPR), EFSA Panel on Plant Protection Products and their Residues (PPR)Search for more papers by this author First published: 25 June 2015 https://doi.org/10.2903/j.efsa.2015.4125Citations: 19 Panel members: Alf Aagaard, Theo Brock, Ettore Capri, Sabine Duquesne, Metka Filipic, Antonio F. Hernandez-Jerez, Karen I. Hirsch-Ernst, Susanne Hougaard Bennekou, Michael Klein, Thomas Kuhl, Ryszard Laskowski, Matthias Liess, Alberto Mantovani, Colin Ockleford, Bernadette Ossendorp, Daniel Pickford (until 30 June 2014), Robert Smith, Paulo Sousa, Ingvar Sundh, Aaldrik Tiktak and Ton Van Der Linden. Correspondence: pesticides.ppr@efsa.europa.eu Acknowledgement: The Panel wishes to thank the members of the Working Group on Beehave Model Evaluation, Jos Boesten, Fani Hatjina, Jeff Pettis, Melissa Reed, Fabio Sgolastra, Robert Smith and Christopher John Topping, for the preparatory work on this scientific opinion, and EFSA staff, Franz Streissl, Maria Arena, Domenica Auteri, Agnès Rortais and Csaba Szentes, for the support provided to this scientific opinion. Adoption date: 27 May 2015 Published date: 25 June 2015 Question number: EFSA-Q-2014-00904 On request from: EFSA AboutPDF ToolsExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract The Panel has interpreted the Terms of Reference by carrying out a stepwise evaluation of the BEEHAVE simulation model with a view to assessing its suitability for use in a regulatory context and for risk assessment of multiple stressors at the landscape level. The EFSA opinion on good modelling practice was used to evaluate the model and its documentation systematically. The overall conclusion is that BEEHAVE performs well in modelling honeybee colony dynamics, and the supporting documentation is generally good but does not fully meet the criteria of the good modelling opinion. BEEHAVE is not yet usable in a regulatory context primarily because it needs a pesticide module. BEEHAVE has a Varroa/virus module, although this seems to underestimate the impact of Varroa/virus on colony survival, and additional stressors (chemical and biological) would need to be added to allow investigation of the effects of interactions of pesticides with multiple stressors. BEEHAVE currently uses a very simple representation of a landscape and this should be extended. There is only one environmental scenario in the present version of BEEHAVE (European central zone—weather scenarios for Germany and the UK) and extension to other European zones would be needed. The supporting data and default parameter values should be further evaluated and justified. The modelling environment used by BEEHAVE (NetLogo) has an excellent user interface but provides limited opportunities for extending the model. The Panel recommends that BEEHAVE should be adopted as the basis for modelling the impact on honeybee colonies of pesticides and other stressors, but that further development should use a standard, object-oriented language rather than NetLogo. References AFSSA (Agence Française de Sécurité des Aliments), 2009. Mortalités, effondrements et affaiblissements des colonies d'abeilles. Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP and Le Conte Y, 2010. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, 12, 774– 782. Al-Tikrity WS, Benton AW, Hillman RC and Clarke WW Jr, 1972. The relationship between the amount of unsealed brood in honeybee colonies and their pollen collection. Journal of Apicultural Research, 11, 9– 12. Amdam GV and Omholt SW, 2003. The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. Journal of Theoretical Biology, 223, 451– 464. Ament SA, Wang Y and Robinson GE, 2010. Nutritional regulation of division of labor in honey bees: toward a systems biology perspective. Wiley Interdisciplinary Review Systems Biology and Medicine, 2, 566– 576. ANSES (Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail), 2015. Co-expositions des abeilles aux facteurs de stress. Maisons-Alfort : Anses. 252 p. in press. Aufauvre J, Biron DG, Vidau C, Fontbonne R, Roudel M, Diogon M, Vigues B, Belzunces LP, Delbac F and Blot N, 2012. Parasite insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee. Scientific Reports, 2, 326. doi:10.1038/srep00326. Aufauvre J, Misme-Aucouturier B, Vigues B, Texier C, Delbac F and Blot N, 2014. Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLOS ONE, 9(3), e91686. doi:10.1371/journal.pone.0091686. Ball BV (1983). The association of Varroa jacobsoni with virus diseases of honey bees. Experimental and Applied Acarology, 19, 607– 613. Becher MA, Hildenbrandt H, Helmelrijk CK and Moritz RFA, 2010. Brood temperature, task division and colony survival in honey bees: a model. Ecological Modelling, 221, 769– 776. Becher MA, Grimm V, Thorbek P, Horn J, Kennedy PJ and Osborne JL, 2014. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure. Journal of Applied Ecology, 51, 2, 470– 482. doi:10.1111/1365–2664.12222. Belzunces LP, Tchamitchian S and Brunet JL, 2012. Neural effects of insecticides in the honey bee. Apidologie, 43, 348– 370. Bendahou N, Bounias M and Fleche C, 1997. Acute toxicity of cypermethrin and fenitrothion on honeybees (Apis mellifera mellifera) according to age, formulations and (chronic paralysis virus)/insecticide interaction. Journal of Environmental Biology, 18, 55– 65. Berthoud H, Imdorf A, Haueter M, Radloff S and Neumann P, 2010. Virus infections and winter losses of honey bee colonies (Apis mellifera). Journal of Apicultural Research, 49, 60– 65. doi:org/10.3896/ibra.1.49.1.08. Brodschneider R and Crailsheim K, 2010. Nutrition and health in honey bees. Apidologie, 41, 278– 294. doi:org/10.1051/apido/2010012. Bühlmann G, 1985. Assessing population dynamics in a honeybee colony. Mitteilungen der Deutschen Gesellschaft fuer Allgemeine und Angewandte Entomologie, 4, 312– 316. Cale GH Jr, 1968. Pollen gathering relationship to honey collection and egg-laying in honey bees. American Bee Journal, 10(8), 8– 9. Carreck NL, Ball BV and Martin SJ, 2010a. Honey bee collapse and changes in viral prevalence associated with Varroa destructor. Journal of Apicultural Research, 49, 93– 94. doi:10.3896/IBRA.1.49.1.13. Carreck NL, Ball BV and Martin SJ, 2010b. The epidemiology of cloudy wing virus infections in honey bee colonies in the UK. Journal of Apicultural Research, 49, 66– 71. doi:10.3896/IBRA.1.49.1.09. Cepero A, Ravoet J, Gómez-Moracho T, Bernal JL, Del Nozal MJ, Bartolomé C, Maside X, Meana A, González-Porto AV, De Graaf DC, Martín-Hernández R and Higes M, 2014. Holistic screening of collapsing honey bee colonies in Spain: a case study. BMC Research Notes, 7, 649. doi: 10.1186/1756–0500- 7– 649. Chauzat M-P, Martel A-C, Zeggane S, Drajnudel P, Schurr F, Clément M-C, Ribière-Chabert M, Aubert M and Faucon J-P, 2010a. A case control study and a survey on mortalities of honey bee colonies (Apis mellifera) in France during the winter of 2005–6. Journal of Apicultural Research, 49, 40– 51. doi: 10.3896/IBRA.1.49.1.06. Chauzat M-P, Martel A-C, Blanchard P, Clément M-C, Schurr F, Lair C, Ribière-Chabert M, Wallner K, Rosenkranz P and Faucon J-P, 2010b. A case report of a honey bee colony poisoning incident in France. Journal of Apicultural Research, 49, 113– 115. doi: 10.3896/IBRA.1.49.1.22. Chauzat M-P, Martel AC, Cougoule N, Porta P, Lachaize J, Zeggane S, Aubert M, Carpentier P and Faucon JP, 2011. An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera Apidae) to monitor pesticide presences in continental France. Environmental Toxicology & Chemistry, 30, 103– 111. Conn MP, 2008. Sourcebook of Models for Biomedical Research. Human Press Inc. Springer Science and Businees Media LLC. Totowa, New Jersey. Dahle B, 2010. The role of Varroa destructor for honey bee colony losses in Norway. Journal of Apicultural Research, 49, 124– 125. doi: 10.3896/IBRA.1.49.1.26. DeGrandi-Hoffman G, Roth SA, Loper GL and Erickson EH, 1989. Beepop: a honeybee population dynamics simulation model. Ecological Modelling, 45, 133– 150. De Wit CT, 1982. Simulation of living systems. In: Simulation of plant growth and crop production. Eds FWT Penning de Vries and HH Van Laar. Pudoc, Wageningen, 3– 8. Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Brunet J-L and Alaux C, 2013. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLOS ONE, 8(8), e72016. doi:10.1371/journal.pone.0072016. Doublet V, Labarussias M, De Miranda JR, Moritz RFA and Paxton RJ, 2014. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environmental Microbiology, 17, 969– 983. doi: 10.1111/1462–2920.12. Dražić MM, Filipi J, Prdun S, Bubalo D, Špehar M, Cvitković D, Kezić D, Pechhacker H and Kezić N, 2014. Colony development of two Carniolan genotypes (Apis mellifera carnica) in relation to environment. Journal of Apicultural Research, 53, 261– 268. Dukas R, 2008. Mortality rates of honey bees in the wild. Insectes Sociaux, 55, 252– 255. EFSA (European Food Safety Authority), 2013a. EFSAs 18th Scientific Colloquium on Towards holistic approaches to the risk assessment of multiple stressors in bees. doi: 10.2805/53269. EFSA (European Food Safety Authority), 2013b. EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 2013; 11(7): 3295, 268 pp. doi:10.2903/j.efsa.2013.3295. EFSA Panel on Plant Protection Products and their Residues (PPR), 2012. Scientific Opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 2012; 10(5): 2668, 275 pp. doi:10.2903/j.efsa.2012.2668. EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), 2014. Scientific Opinion on good modelling practice in the context of mechanistic effect models for risk assessment of plant protection products. EFSA Journal 2014; 12(3): 3589, 92 pp. doi:10.2903/j.efsa.2014.3589. EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), 2015. Scientific Opinion of the Panel on Plant Protection Products and their Residues addressing the state of the science on risk assessment of plant protection products for non-target arthropods. EFSA Journal 2015; 13(2):3996, 212pp. doi:10.2903/j.efsa.2014.3996. Elekonich MM and Roberts SP, 2005. Honey bees as a model for understanding mechanisms of life history transitions. Comparative Biochemistry and Physiology, Part A, 141, 362– 371. El-Kazafy AT and Al-Kahtani SN, 2013. Relationship between population size and productivity of honey bee colonies. Journal of Entomology 10: 163– 169. Fefferman NH and Starks PT, 2006. A modeling approach to swarming in honey bees (Apis mellifera). Insectes Sociaux, 53, 37– 45. FERA (Food and Environment Research Agency), 2012. Pesticide usage statistics. FERA database. Available online: http://pusstats.csl.gov.uk/index.cfm. Fischer J, Müller T, Spatz A-K, Greggers U, Grünewald B and Menzel R, 2014. Neonicotinoids interfere with specific components of navigation in honeybees. PLOS ONE 9(3), e91364. doi:10.1371/journal.pone.0091364. Free JB, 1965. The allocation of duties among worker honey bees. Symposia of the Zoological Society of London, 14, 39– 59. Free JB and Racey PA, 1968. The effect of the size of honeybee colonies on food consumption, brood rearing and the longevity of the bees during winter. Entomologia Experimentalis et Applicata, 11, 241– 249. Free JB and Spencer-Booth Y, 1958. Observations on the temperature regulation and food consumption of honeybees (Apis mellifera). Journal of Experimental Biology, 35, 930– 937. Fries I, Camazine S and Sneyd J, 1994. Population dynamics of Varroa jacobsoni: A model and a review. Bee World, 75, 5– 28. Fukuda H, 1983. The relationship between work efficiency and population size in a honeybee colony. Researches on Population Ecology, 25, 249– 263. Ghamdi A and Hoopingarner R, 2004. Modeling of honey bee and Varroa mite population dynamics. Saudi Journal of Biological Science, 1, 21– 36. Gilley DC and Tarpy DR, 2005. Three mechanisms of queen elimination in swarming honey bee colonies. Apidologie, 36, 461– 474. Greenpeace, 2013. Bees in decline—a review of factors that put pollinators and agriculture in Europe at risk. Greenpeace International, Amsterdam. Available online: http://www.greenpeace.org/international/en/publications/Campaign-reports/Agriculture/Bees-in-Decline/. Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G, Huth A, Jepsen JU, Jorgensen C, Mooij WM, Muller B, Pe'er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Ruger N, Strand E, Souissi S, Stillman RA, Vabo R, Visser U and DeAngelis DL, 2006. A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198, 115– 126. Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J and Railsback SF, 2010. The ODD protocol. A review and first update. Ecological Modelling, 221, 2760– 2768. Goulson D, Nicholls E, Botías C and Rotheray EL, 2015. Bee delines driven by combined stress from parasites, pesticides and lack of flowers. Science, 347. doi: 10.1126/science.1255957. Harbo JR, 1986. Effect of population size on brood production, worker survival and honey gain in colonies of honeybees. Journal of Apicultural Research, 25, 22– 29. Harz M, Müller and F Rademacher E, 2010. Organic acids: acute toxicity on Apis mellifera and recovery in the haemolymph. Journal of Apicultural Research, 49, 95– 96. Hatjina F, Tsoktouridis G, Bouga M, Charistos L, Evangelou V, Avtzis D, Meeus I, Brunain M, Smagghe G and De Graaf DC, 2011. Polar tube protein gene diversity among Nosema ceranae strains derived from a Greek honey bee health study. Journal of Invertebrate Pathology, 108, 131– 134. doi:10.1016/j.jip.2011.07.003. Hatjina F, Papaefthimiou C, Charistos L, Dogaroglu T, Bouga M, Emmanouil C and Arnold G, 2013. Sublethal doses of imidacloprid decreased size of hypopharyngeal glands and respiratory rhythm of honeybees in vivo. Apidologie, 44, 467–480. doi:10.1007/s13592–013- 0199– 4. Hatjina F, Costa C, Büchler R, Uzunov A, Drazic M, Filipi J, Charistos L, Ruottinen L, Andonov S, Meixner MD, Bienkowska M, Dariusz G, Panasiuk B, Le Conte Y, Wilde J, Berg S, Bouga M, Dyrba W, Kiprijanovska H, Korpela S, Kryger P, Lodesani M, Pechhacker H, Petrov P and Kezic N, 2014. Population dynamics of European honey bee genotypes under different environmental conditions. Journal of Apiculture Research, 53, 233– 247. Hedtke K, Jensen PM, Jensen AB & Genersch E (2011). Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood. Journal of Invertebrate Pathology, 108, 167– 173. Heinrich B, 1993. The hot-blooded insects: strategies and mechanisms of thermoregulation. Springer-Verlag, Berlin. Hellmich RL II and Rothenbuhler WC, 1986a. Relationship between different amounts of brood and the collection and use of pollen by honey bee (Apis mellifera). Apidologie, 17, 13– 20. Hellmich RL II and Rothenbuhler WC, 1986b. Pollen hoarding and use by high and low pollen-hoarding honeybees during the course of brood rearing. Journal of Apicultural Research, 25, 30– 34. Henry M, Requier F, Rollin O, Odoux JF, Aupinel P, Aptel J, Tchamitchian S and Decourtye A, 2012. A common pesticide decreases foraging success and survival in honeybees. Science, 336. doi:10.1126/science.1215039. Hepburn HR and Radloff SE, 2011. Honeybees of Asia. Springer Verlag, Berlin. Imdorf A, Ruoff K and Fluri P, 2008. Volksentwicklung bei der Honigbiene. ALP Forum, 68, 1– 88. Kevan PG, Guzman E, Skinner A and Van Englesdorp D, 2007. Colony collapse disorder (CCD) in Canada: do we have a problem? HiveLights, 20(2), 15– 18. Khoury DS, Barron AB and Myerscough MR, 2013. Modelling food and population dynamics in honey bee colonies. PLOS ONE, 8, e59084. Le Conte Y, Ellis M and Ritter W, 2010. Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie, 41, 353– 363. Martin S, 1998. A population model for the ectoparasitic mite Varroa jacobsoni in honey bee (Apis mellifera) colonies. Ecological Modelling, 109, 267– 281. Martin SJ, 2001. The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. Journal of Applied Ecology, 38, 1082– 1093. Martin SJ, Ball BV and Carreck NL, 2010. Prevalence and persistence of deformed wing virus (DWV) in untreated or acaricide treated Varroa destructor infested honey bee (Apis mellifera) colonies. Journal of Apicultural Research, 49, 72– 79. doi:10.3896/IBRA.1.49.1.10. Medrzycki P, Sgolastra F, Bortolotti L, Bogo G, Tosi S, Padovani E, Porrini C and Sabatini A-G, 2010. Influence of brood rearing temperature on honey bee development and susceptibility to poisoning by pesticides. Journal of Apicultural Research, 49, 52– 59. doi:3896/IBRA.1.49.1.07. Meixner MD, Francis RM, Gajda A, Kryger P, Andonov S, Uzunov A, Topolska G, Costa C, Amiri E, Berg S, Bienkowska M, Bouga M, Büchler R, Dyrba W, Gurgulova K, Hatjina F, Ivanova E, Janes M, Kezic N, Korpela S, Le Conte Y, Panasiuk B, Pechhacker H, Tsoktouridis G, Vaccari G and Wilde J, 2014. Occurrence of parasites and pathogens in honey bee colonies used in a European genotype-environment interactions experiment. Journal of Apiculture Research, 53, 215– 219. Mitchell JC, 2003. Concepts in programming languages. Cambridge University Press, Cambridge, UK, 278 pp. Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G, Varricchio P, Della Vedova G, Cattonaro F, Caprio E & Pennacchio F (2012). Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathogens, 8, e1002735. Neukirch A, 1982. Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. Journal of Comparative Physiology, 146, 35– 40. Neumann P and Carreck NL, 2010. Honey bee colony losses. Journal of Apicultural Research, 49, 1– 6. doi:10.3896/IBRA.1.49.1.01. Nordström S, Fries I, Aarhus A, Hansen H, Korpela S (1999). Virus infections in Nordic honey bee colonies with no, low or severe Varroa jacobsoni infestations. Apidologie 30, 475– 484. Omholt SW, 1986. A model for intracolonial population dynamics of the honeybee in temperate zones. Journal of Apicultural Research, 25, 9– 21. Parry HR, Topping CJ, Kennedy, MC, Boatman ND and Murray AWA, 2012. A Bayesian sensitivity analysis applied to an agent-based model of bird population response to landscape change. Environmental Modelling & Software, 45, 104– 115. Paxton RJ, 2010. Does infection by Nosema ceranae cause 'Colony Collapse Disorder' in honey bees (Apis mellifera)? Journal of Apicultural Research, 49, 80– 84. doi:10.3896/IBRA. 1.49.1.11. Pernal SF and Currie RW, 2000. Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie, 31, 387– 409. Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R and van Engelsdorp D, 2013. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLOS ONE, 8(7), e70182. doi:10.1371/journal.pone.0070182. Polhill JG, Parker DC, Brown DG and Grimm V, 2008. Using the ODD protocol for describing three agent-based social simulation models of land use change. Journal of Artificial Societies and Social Simulation, 11(2), 3. Available online: http://jasss.soc.surrey.ac.uk/11/2/3.html. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O and Kunin WE, 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25, 345– 353 doi:org/10.1016/j.tree.2010.01.007. Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F, 2013. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. PNAS, 110, 48, 18466– 18471, doi:10.1073/pnas.1314923110. Retschnig G, Williams GR, Odemer R, Boltin J, Di Poto C, Mehmann MM, Retschnig P, Winiger P, Rosenkranz P and Neumann P, 2015. Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (Apis mellifera) lifespan and behaviour in a colony environment. Environmental Microbiology (epub ahead of print). doi: 10.1111/1462–2920.12825. Ribbands CR, 1953. The behaviour and social life of honeybees. Bee Research Association, London. Roberts SP and Elekonich MM, 2005. Muscle biochemistry and the ontogeny of flight capacity during behavioral development in the honey bee, Apis mellifera. Journal of Experimental Biology, 208, 4193– 4198. Rondeau G, Sánchez-Bayo F, Tennekes AH, Decourtye A, Ramírez-Romero R and Desneux N, 2014. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Scientific Reports, 4, 5566. doi:10.1038/srep05566. Rueppell O, Bachelier C, Fondrk MK and Page RE, 2007. Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Experimental Gerontology, 42, 1020– 1032. Rueppell O, Kaftanouglu O and Page RE, 2009. Honey bee (Apis mellifera) workers live longer in small than in large colonies. Experimental Gerontology, 44, 447– 452. Russell S, Barron AB and Harris D, 2013. Dynamic modelling of honey bee (Apis mellifera) colony growth and failure. Ecological Modelling, 265, 158– 169. Sagili RR and Burgett DM, 2011. Evaluating honey bee colonies for pollination. A guide for commercial growers and beekeepers. A Pacific Northwest Extension Publication, PNW 623. Available online: http://spottedwing.org/system/files/u1473/pnw623.pdf. Sakagami SF and Fukuda H, 1968. Life tables for worker honeybees. Research on Population Ecology, X, 127– 139. Santrac V, Granato A and Mutinelli F, 2010. Detection of Nosema ceranae in Apis mellifera from Bosnia and Herzegovina. Journal of Apicultural Research, 49, 100– 101. doi:10.3896/IBRA.1.49.1.16. Schippers MP, Dukas R, Smith RW, Wang J, Smolen K and McClelland GB, 2006. Lifetime performance in foraging honeybees: behaviour and physiology. Journal of Experimental Biology, 209, 3828– 3836. Schmickl T and Crailsheim K, 2007. HoPoMo: a model of honeybee intracolonial population dynamics and resources management. Ecological Modelling, 204, 219– 245. Schmid-Hempel P and Wolf T, 1988. Foraging effort and life-span of workers in a social insect. Journal of Animal Ecology, 57, 509– 521. Shen M, Cui L, Ostiguy N, Cox-Foster D (2005a). Intricate transmission routes and interaction between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honey bee host and the parasitic varroa mite. Journal of General Virology, 86, 2281– 2289. Shen M, Yang X, Cox-Foster D, Cui L (2005b). The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342, 141– 149. Seeley TD, 1994. Honey bee foragers as sensory units of their colonies. Behavioral Ecology and Sociobiology, 34, 51– 62. Seeley TD and Buhrman SC, 1999. Group decision making in swarms of honey bees. Behavioral Ecology and Sociobiology, 45, 19– 31. Seeley TD and Levien RA, 1987. A colony of mind. The beehive as thinking machine. The Sciences, 27, 38– 43. Seeley TD, Camazine S and Sneyd J, 1991. Collective decision-making in honey bees: how colonies choose among nectar sources. Behavioral Ecology and Sociobiology, 28, 277– 290. Seeley TD, Reich AM and Tautz J, 2005. Does plastic comb foundation hinder waggle dance communication? Apidologie, 36, 513– 521. Sumpter D and Pratt S, 2003. A modelling framework for understanding social insect foraging. Behavioural Ecology and Sociobiology, 53, 131– 144. Topping CJ, Hoye TT and Olesen CR, 2010. Opening the black box—development, testing and documentation of a mechanistically rich agent-based model. Ecological Modelling 221, 245– 255. van Engelsdorp D, Tarpy DR, Lengerichc EJ and Pettis JS, 2012a. Idiopathic brood disease syndrome and queen events as precursors of colony mortality in migratory beekeeping operations in the eastern United States. Preventive Veterinary Medicine, 108, 225– 233. doi:org/10.1016/j.prevetmed.2012.08.004. van Engelsdorp D, Caron D, Hayes J, Underwood R, Henson M, Rennich K, Spleen A, Andree M, Snyder R, Lee K, Roccasecca K, Wilson M, Wilkes J, Lengerich E and Pettis J, 2012b. A national survey of managed honey bee 2010–11 winter colony losses in the USA: results from the Bee Informed Partnership. Journal of Apicultural Research, 51, 115– 124. doi:org/10.3896/IBRA.1.51.1.14. Van der Zee R, Pisa L, Andonov S, Brodschneider R, Charrière J-D, Chlebo R, Coffey MF, Crailsheim K, Dahle B, Gajda A, Gray A, Drazic MM, Higes M, Kauko L, Kence A, Kence M, Kezic N, Kiprijanovska H, Kralj J, Kristiansen P, Martin-Hernandez R, Mutinelli F, Nguyen BK, Otten C, Özkirim A, Pernal SF, Peterson M, Ramsay G, Santrac V, Soroker V, Topolska G, Uzunov A, Vejsnæss F, Wei S and Wilkins S, 2012. Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–2009 and 2009–2010. Journal of Apicultural Research, 51, 100– 114. doi:org/10.3896/IBRA.1.51.1.12. Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet J-L, Texier C, Biron DG, Blot N, Alaoui HE, Belzunces LP and Delbac F, 2011. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLOS ONE, 6(6), e21550. Visscher PK and Dukas R, 1997. Survivorship of foraging honey bees. Insectes Sociaux, 44, 1– 5. Weidenmuller A and Tautz J, 2002. In-hive behavior of pollen foragers (Apis mellifera) in honey bee colonies under conditions of high and low pollen need. Ethology, 108, 205– 221. Wharton KE, Dyer FC and Getty T, 2008. Male elimination in the honeybee. Behavioral Ecology, 19, 1075– 1079. doi: 10.1093/beheco/arn108. Wilde J, Fuchs S, Bratkowski J and Siuda M, 2005. Distribution of Varroa destructor between swarms and colonies. Journal of Apicultural Research, 44, 190– 194. Winston ML, 1987. The biology of the honey bee. Harvard University Press, Cambridge, MA. Wright W, 2008. How many eggs can a queen lay? Bee Source. Available at: http://www.beesource.com/point-of-view/walt-wright/how-many-eggs-can-a-queen-lay/. Yang X, Cox-Foster DL (2005). Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. PNAS 102, 7470– 7475. Yue C, Genersch E (2005). RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). Journal of General Virology, 86, 3419– 3424. Citing Literature Volume13, Issue6June 20154125 This article also appears in:Protecting bee health in Europe ReferencesRelatedInformation

Referência(s)