Artigo Acesso aberto Revisado por pares

Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China

2019; Multidisciplinary Digital Publishing Institute; Volume: 11; Issue: 21 Linguagem: Inglês

10.3390/su11216032

ISSN

2071-1050

Autores

Rina Wu, Yongfang Wang, Yuhai Bao, Enliang Guo,

Tópico(s)

Climate change impacts on agriculture

Resumo

Droughts are among the more costly natural hazards, and drought risk analysis has become urgent for the proper planning and management of water resources in grassland ecosystems. We chose Songnen grassland as a case study, used a standardized precipitation evapotranspiration index (SPEI) to model drought characteristics, employed run theory to define the drought event, and chose copula functions to construct the joint distribution for drought variables. We applied two kinds of return periods to conduct a drought risk assessment. After evaluating and comparing several distribution functions, drought severity (DS) was best described by the generalized extreme value (GEV) distribution, whereas drought duration (DD) was best fitted by gamma distribution. The root mean square error (RMSE) and Akaike Information Criterion (AIC) goodness-of-fit measures to evaluate their performance, the best-performing copula is Frank copula to model the joint dependence structure for each drought variables. The results of the secondary return periods indicate that a higher risk of droughts occurs in Keshan county, Longjiang county, Qiqiha’er city, Taonan city, and Baicheng city. Furthermore, a relatively lower risk of drought was found in Bei’an city, Mingquan county, Qinggang county, and qian’an county, and also in the Changling county and Shuangliao city. According to the calculation of the secondary return periods, which considered all possible scenarios in our study, we found that the secondary return period may be the best indicator for evaluating grassland ecosystem drought risk management.

Referência(s)