Lisocabtagene Maraleucel (liso-cel) Manufacturing Process Control and Robustness across CD19+ Hematological Malignancies
2019; Elsevier BV; Volume: 134; Issue: Supplement_1 Linguagem: Inglês
10.1182/blood-2019-127150
ISSN1528-0020
AutoresJeffrey Teoh, Timothy G. Johnstone, Brian Christin, Rachel Yost, Neil A. Haig, Mary Mallaney, Aditya Radhakrishnan, Heidi H. Gillenwater, Tina Albertson, Paul Guptill, Lauren F. Brown, Christopher G. Ramsborg, Ronald J. Hause, Ryan Larson,
Tópico(s)Biosimilars and Bioanalytical Methods
ResumoBackground Lisocabtagene maraleucel (liso-cel) is an investigational, CD19-directed, genetically modified, autologous cellular immunotherapy administered as a defined composition of CD8+ and CD4+ components to deliver target doses of viable chimeric antigen receptor (CAR) T cells from both components. The CAR comprises a CD19-specific scFv and 4-1BB-CD3ζ endodomain. Liso-cel is being developed for the treatment of multiple B cell malignancies, including relapsed/refractory large B cell non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). The liso-cel manufacturing process design includes controls that enable robustness across heterogeneous patient populations and disease indications, minimizing between-lot variability. This is highlighted by consistency in process duration, reduction of terminally differentiated T cells present in the T cell starting material, and consistency in T cell purity across B cell NHL and CLL/SLL indications. Methods The liso-cel manufacturing process involves selection of CD8+ and CD4+ T cells from leukapheresis, followed by independent CD8+ and CD4+ activation, transduction, expansion, formulation, and cryopreservation. Liso-cel was manufactured in support of the TRANSCEND NHL 001 (NCT02631044) and TRANSCEND CLL 004 (NCT03331198) clinical trials. Phenotypic analysis of T cell and B cell composition from leukapheresis, T cell starting material, and CAR T cell product was performed by flow cytometry. Molecular characterization of T cell receptor (TCR) clonality was estimated from the T cell starting material and CAR T cell product through transcriptional profiling. Results Liso-cel manufacturing process optimizations have been implemented in advance of commercialization. These optimizations have significantly improved process duration consistency (Figure 1; F test P=4.1×10−36). Both phenotypic and molecular TCR clonality analyses demonstrated a significant reduction in terminally differentiated CD8+ T cells across the manufacturing process. Frequencies of CD45RA+ CCR7− populations were measured by flow cytometry in CD8+ T cell starting material (median=35.1%) and CAR T cell product (median=11.7%; Wilcoxon rank sum P=3.1×10−25). Characterization of TCR clonality showed a significant decrease in clonality in the CAR T cell product compared with T cell starting material (Wilcoxon rank sum P=5.6×10−6), suggesting selective expansion of clonally diverse, less differentiated T cell populations. These findings are supported by the predominant memory T cell composition observed in liso-cel. Manufacturing process robustness enabled by in-process T cell selection is further demonstrated by the capability to produce highly pure T cell products across heterogeneous patient populations and different disease indications. T cell and B cell composition were characterized in the leukapheresis, selected T cell material, and CAR T cell product, demonstrating consistent clearance of non-T cells, including CD19+ B cells in both B- cell NHL and CLL/SLL patient cohorts. Although the CD19+ B cell composition is significantly higher in leukapheresis from patients with CLL/SLL (median=10.0% of leukocytes) compared with B cell NHL patients (median=0.0% of leukocytes, Wilcoxon rank sum P=1.6×10−9), CAR T cell products manufactured from both CLL/SLL and B cell NHL patient populations consistently demonstrated clearance of non-T cells, including CD19+ cells, to below levels of quantitation. Conclusion Despite variation between B cell NHL and CLL/SLL patient leukapheresis, T cell enrichment before activation and transduction enables consistent downstream process performance and T cell purity, and a substantially reduced risk of transducing residual tumor cells. In addition, the reduction of terminally differentiated effector T cells and capacity to retain T cell diversity further improved consistency in product quality. Taken together, process modifications have enabled consistent manufacturing duration and quality of liso-cel product, which support operational efficiency and scalability for commercial production. Disclosures Teoh: Juno Therapeutics, a Celgene Company: Employment, Equity Ownership. Johnstone:Juno Therapeutics, a Celgene Company: Employment, Patents & Royalties: Author on a number of patent applications and invention disclosures relating to cell therapy and immunosequencing. Christin:Juno Therapeutics, a Celgene Company: Employment, Equity Ownership. Yost:Juno Therapeutics, a Celgene Company: Employment, Equity Ownership. Haig:Juno Therapeutics, a Celgene Company: Employment, Equity Ownership. Mallaney:Juno Therapeutics, a Celgene Company: Employment. Radhakrishnan:Juno Therapeutics, a Celgene Company: Employment, Equity Ownership. Gillenwater:Juno Therapeutics, a Celgene Company: Employment, Equity Ownership. Albertson:Juno Therapeutics, a Celgene Company: Employment, Equity Ownership. Guptill:Juno Therapeutics, a Celgene Company: Employment. Brown:Juno Therapeutics, a Celgene Company: Employment. Ramsborg:Juno Therapeutics, a Celgene Company: Employment, Equity Ownership, Patents & Royalties: Numerous patents. Hause:Juno Therapeutics, a Celgene Company: Employment, Equity Ownership. Larson:Juno Therapeutics, a Celgene Company: Employment, Equity Ownership.
Referência(s)