The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases
2019; Elsevier BV; Volume: 19; Issue: 1 Linguagem: Inglês
10.1074/mcp.r119.001743
ISSN1535-9484
AutoresJuan Antonio Vizcaíno, Peter Kubiniok, Kevin A. Kovalchik, Qing Ma, Jérôme D. Duquette, Ian Mongrain, Eric W. Deutsch, Bjoern Peters, Alessandro Sette, Isabelle Sirois, Étienne Caron,
Tópico(s)Monoclonal and Polyclonal Antibodies Research
ResumoThe science that investigates the ensembles of all peptides associated to human leukocyte antigen (HLA) molecules is termed "immunopeptidomics" and is typically driven by mass spectrometry (MS) technologies. Recent advances in MS technologies, neoantigen discovery and cancer immunotherapy have catalyzed the launch of the Human Immunopeptidome Project (HIPP) with the goal of providing a complete map of the human immunopeptidome and making the technology so robust that it will be available in every clinic. Here, we provide a long-term perspective of the field and we use this framework to explore how we think the completion of the HIPP will truly impact the society in the future. In this context, we introduce the concept of immunopeptidome-wide association studies (IWAS). We highlight the importance of large cohort studies for the future and how applying quantitative immunopeptidomics at population scale may provide a new look at individual predisposition to common immune diseases as well as responsiveness to vaccines and immunotherapies. Through this vision, we aim to provide a fresh view of the field to stimulate new discussions within the community, and present what we see as the key challenges for the future for unlocking the full potential of immunopeptidomics in this era of precision medicine. The science that investigates the ensembles of all peptides associated to human leukocyte antigen (HLA) molecules is termed "immunopeptidomics" and is typically driven by mass spectrometry (MS) technologies. Recent advances in MS technologies, neoantigen discovery and cancer immunotherapy have catalyzed the launch of the Human Immunopeptidome Project (HIPP) with the goal of providing a complete map of the human immunopeptidome and making the technology so robust that it will be available in every clinic. Here, we provide a long-term perspective of the field and we use this framework to explore how we think the completion of the HIPP will truly impact the society in the future. In this context, we introduce the concept of immunopeptidome-wide association studies (IWAS). We highlight the importance of large cohort studies for the future and how applying quantitative immunopeptidomics at population scale may provide a new look at individual predisposition to common immune diseases as well as responsiveness to vaccines and immunotherapies. Through this vision, we aim to provide a fresh view of the field to stimulate new discussions within the community, and present what we see as the key challenges for the future for unlocking the full potential of immunopeptidomics in this era of precision medicine. "Treatment without prevention is simply unsustainable." Bill Gates The Human Genome Project was a major milestone in the life sciences (1Venter C.J. Adams M.D. Myers E.W. Li P.W. Mural R.J. Sutton G.G. Smith H.O. Yandell M. Evans C.A. Holt R.A. Gocayne J.D. Amanatides P. Ballew R.M. Huson D.H. Wortman J. Zhang Q. Kodira C.D. Zheng X.H. Chen L. Skupski M. Subramanian G. Thomas P.D. Zhang J. Miklos G.L. Nelson C. Broder S. Clark A.G. Nadeau J. McKusick V.A. Zinder N. Levine A.J. Roberts R.J. Simon M. Slayman C. Hunkapiller M. Bolanos R. Delcher A. Dew I. Fasulo D. Flanigan M. Florea L. Halpern A. dhar Hannenhalli Kravitz S. Levy S. Mobarry C. Reinert K. Remington K. Abu-Threideh J. Beasley E. Biddick K. Bonazzi V. Brandon R. Cargill M. Chandramouliswaran I. Charlab R. Chaturvedi K. Deng Z. Francesco V. Dunn P. Eilbeck K. Evangelista C. Gabrielian A.E. Gan W. Ge W. Gong F. Gu Z. Guan P. Heiman T.J. Higgins M.E. Ji R.-R. Ke Z. Ketchum K.A. Lai Z. Lei Y. Li Z. Li J. Liang Y. Lin X. Lu F. Merkulov G.V. Milshina N. Moore H.M. Naik A.K. Narayan V.A. Neelam B. Nusskern D. Rusch D.B. Salzberg S. Shao W. Shue B. Sun J. Wang Z. Wang A. Wang X. Wang J. Wei M.-H. Wides R. Xiao C. Yan C. Yao A. Ye J. Zhan M. Zhang W. Zhang H. Zhao Q. Zheng L. Zhong F. Zhong W. Zhu S.C. Zhao S. Gilbert D. Baumhueter S. Spier G. Carter C. Cravchik A. Woodage T. Ali F. An H. Awe A. Baldwin D. Baden H. Barnstead M. Barrow I. Beeson K. Busam D. Carver A. Center A. Cheng M. Curry L. Danaher S. Davenport L. Desilets R. Dietz S. Dodson K. Doup L. Ferriera S. Garg N. Gluecksmann A. Hart B. Haynes J. Haynes C. Heiner C. Hladun S. Hostin D. Houck J. Howland T. Ibegwam C. Johnson J. Kalush F. Kline L. Koduru S. Love A. Mann F. May D. McCawley S. McIntosh T. McMullen I. Moy M. Moy L. Murphy B. Nelson K. Pfannkoch C. Pratts E. Puri V. Qureshi H. Reardon M. Rodriguez R. Rogers Y.-H. Romblad D. Ruhfel B. Scott R. Sitter C. Smallwood M. Stewart E. Strong R. Suh E. Thomas R. Tint N. Tse S. Vech C. Wang G. Wetter J. Williams S. Williams M. Windsor S. Winn-Deen E. Wolfe K. Zaveri J. Zaveri K. Abril J.F. Guigó R. Campbell M.J. Sjolander K.V. Karlak B. Kejariwal A. Mi H. Lazareva B. Hatton T. Narechania A. Diemer K. Muruganujan A. Guo N. Sato S. Bafna V. Istrail S. Lippert R. Schwartz R. Walenz B. Yooseph S. Allen D. Basu A. Baxendale J. Blick L. Caminha M. Carnes-Stine J. Caulk P. Chiang Y.-H. Coyne M. Dahlke C. Mays A. Dombroski M. Donnelly M. Ely D. Esparham S. Fosler C. Gire H. Glanowski S. Glasser K. Glodek A. Gorokhov M. Graham K. Gropman B. Harris M. Heil J. Henderson S. Hoover J. Jennings D. Jordan C. Jordan J. Kasha J. Kagan L. Kraft C. Levitsky A. Lewis M. Liu X. Lopez J. Ma D. Majoros W. niel J. Murphy S. Newman M. Nguyen T. Nguyen N. Nodell M. Pan S. Peck J. Peterson M. Rowe W. Sanders R. Scott J. Simpson M. Smith T. Sprague A. Stockwell T. Turner R. Venter E. Wang M. Wen M. Wu D. Wu M. Xia A. Zandieh A. Zhu X. The sequence of the human genome.Science. 2001; 291: 1304-1351Crossref PubMed Scopus (9797) Google Scholar, 2Lander E. Linton L. Birren B. Nusbaum C. Zody M. Baldwin J. Devon K. Dewar K. yle FitzHugh W. Funke R. Gage D. Harris K. Heaford A. Howland J. Kann L. Lehoczky J. LeVine R. McEwan P. McKernan K. Meldrim J. Mesirov J. Miranda C. Morris W. Naylor J. Raymond C. Rosetti M. Santos R. Sheridan A. Sougnez C. Stange-Thomann Y. Stojanovic N. Subramanian A. Wyman D. Rogers J. Sulston J. Ainscough R. Beck S. Bentley D. Burton J. Clee C. Carter N. Coulson A. Deadman R. Deloukas P. Dunham A. Dunham I. Durbin R. French L. Grafham D. Gregory S. Hubbard T. Humphray S. Hunt A. Jones M. Lloyd C. McMurray A. Matthews L. Mercer S. Milne S. Mullikin J. Mungall A. Plumb R. Ross M. Shownkeen R. Sims S. Waterston R. Wilson R. Hillier L. McPherson J. Marra M. Mardis E. Fulton L. Chinwalla A. Pepin K. Gish W. Chissoe S. Wendl M. Delehaunty K. Miner T. Delehaunty A. Kramer J. Cook L. Fulton R. Johnson D. Minx P. Clifton S. Hawkins T. Branscomb E. Predki P. Richardson P. Wenning S. Slezak T. Doggett N. Cheng J. Olsen A. Lucas S. Elkin C. Uberbacher E. Frazier M. Gibbs R. Muzny D. Scherer S. Bouck J. Sodergren E. Worley K. Rives C. Gorrell J. Metzker M. Naylor S. Kucherlapati R. Nelson D. Weinstock G. Sakaki Y. Fujiyama A. Hattori M. Yada T. Toyoda A. Itoh T. Kawagoe C. Watanabe H. Totoki Y. Taylor T. Weissenbach J. Heilig R. Saurin W. Artiguenave F. Brottier P. Bruls T. Pelletier E. Robert C. Wincker P. Smith D. Doucette-Stamm L. Rubenfield M. Weinstock K. Lee H. Dubois J. Rosenthal A. Platzer M. Nyakatura G. Taudien S. Rump A. Yang H. Yu J. Wang J. Huang G. Gu J. Hood L. Rowen L. Madan A. Qin S. Davis R. Federspiel N. Abola A. Proctor M. Myers R. Schmutz J. ckson Grimwood J. Cox D. Olson M. Kaul R. Raymond C. Shimizu N. Kawasaki K. Minoshima S. Evans G. Athanasiou M. Schultz R. Roe Chen F. Pan H. Ramser J. Lehrach H. Reinhardt R. McCombie W. de la Bastide M. Dedhia N. Blöcker H. Hornischer K. Nordsiek G. Agarwala R. Aravind L. Bailey J. Bateman A. Batzoglou S. Birney E. Bork P. Brown D. Burge C. Cerutti L. Chen H. Church D. Clamp M. Copley R. Doerks T. Eddy S. Eichler E. Furey T. Galagan J. Gilbert J. Harmon C. Hayashizaki Y. Haussler D. Hermjakob H. Hokamp K. Jang W. Johnson L. Jones T. Kasif S. Kaspryzk A. Kennedy S. Kent W. Kitts P. Koonin E. Korf I. Kulp D. Lancet D. Lowe T. McLysaght A. Mikkelsen T. Moran J. Mulder N. Pollara V. Ponting C. Schuler G. Schultz J. Slater G. Smit A. Stupka E. Szustakowki J. Thierry-Mieg D. Thierry-Mieg J. Wagner L. Wallis J. Wheeler R. Williams A. Wolf Y. Wolfe K. Yang S. Yeh R. Collins F. Guyer Peterson J. Felsenfeld A. Wetterstrand K. Patrinos A. Morgan M. de Jong P. Catanese J. Osoegawa K. Shizuya H. Choi S. Chen Y. Szustakowki J. Consortium, IInitial sequencing and analysis of the human genome.Nature. 2001; 409: 860-921Crossref PubMed Scopus (16136) Google Scholar). First-completed twenty years ago, this mind-shifting project has changed and will continue to change the way we practice medicine. Historically, physicians have largely focused on treating disease already in progress, but modern medicine is now progressively shifting from disease treatment to disease prevention based on an individual's risk (3Gambhir S. Ge J.T. Vermesh O. Spitler R. Toward achieving precision health.Sci. Transl. Med. 2018; 10eaao3612Crossref PubMed Scopus (45) Google Scholar). The past two decades have seen an enormous success of wide-scale studies in identifying genetic variants that predict an individual's predisposition to common diseases (4Wijmenga C. Zhernakova A. The importance of cohort studies in the post-GWAS era.Nat. Genet. 2018; 50: 322-328Crossref PubMed Scopus (23) Google Scholar). In fact, robust, rapid and inexpensive identification of functional genetic variants in individuals is now enabling predictive, preventive and personalized medicine approaches (5Tardif J.-C. Rhéaume E. Perreault L.-P. Grégoire J.C. Zada Y. Asselin G. Provost S. Barhdadi A. Rhainds D. L'Allier P.L. Ibrahim R. Upmanyu R. Niesor E.J. Benghozi R. Suchankova G. Laghrissi-Thode F. Guertin M.-C. Olsson A.G. Mongrain I. Schwartz G.G. Dubé M.-P. Pharmacogenomic determinants of the cardiovascular effects of Dalcetrapib.Circulation Cardiovasc. Genetics. 2015; 8: 372-382Crossref PubMed Scopus (0) Google Scholar, 6Tardif J.-C. Rhainds D. Brodeur M. Zada Y. Fouodjio R. Provost S. Boulé M. Alem S. Grégoire J.C. L'Allier P.L. Ibrahim R. Guertin M.-C. Mongrain I. Olsson A.G. Schwartz G.G. Rhéaume E. Dubé M.-P. Genotype-dependent effects of dalcetrapib on cholesterol efflux and inflammation.Circulation Cardiovasc. Genetics. 2018; 9: 340-348Crossref Scopus (37) Google Scholar, 7Hayden E. The rise and fall and rise again of 23andMe.Nat. News. 2017; 550: 174Crossref PubMed Scopus (10) Google Scholar). Since the first report of single-nucleotide polymorphisms (SNPs) 1The abbreviations used are:SNPsingle-nucleotide polymorphismsGWASgenome-wide association studieseQTLgenome-wide transcript quantitative trait lociIWASimmunopeptidome-wide association studiesDDAdata-dependent acquisition. analyzed for association with myocardial infarction by genome-wide association studies (GWAS) in 2002 (8Ozaki K. Ohnishi Y. Iida A. Sekine A. Yamada R. Tsunoda T. Sato H. Sato H. Hori M. Nakamura Y. Tanaka T. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction.Nat. Genet. 2002; 32: 650-654Crossref PubMed Scopus (0) Google Scholar), the GWAS Catalogue resource has now grown to contain tens of thousands of SNPs associated with hundreds of common diseases (9Welter D. MacArthur J. Morales J. Burdett T. Hall P. Junkins H. Klemm A. Flicek P. Manolio T. Hindorff L. Parkinson H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.Nucleic Acids Res. 2014; 42: D1001-D1006Crossref PubMed Scopus (1769) Google Scholar). In this post-GWAS era, the HLA has been established as the region of the genome that is associated with the greatest number of human diseases (10Trowsdale J. Knight J.C. Major histocompatibility complex genomics and human disease.Annu. Rev. Genom. Hum. G. 2012; 14: 301-323Crossref Scopus (252) Google Scholar). In fact, population studies of diverse ancestries have identified hundreds of susceptibility loci within the HLA region that predispose individuals to immune diseases (11Kaur G. Gras S. Mobbs J.I. Vivian J.P. Cortes A. Barber T. Kuttikkatte S. Jensen L. Attfield K.E. Dendrou C.A. Carrington M. McVean G. Purcell A.W. Rossjohn J. Fugger L. Structural and regulatory diversity shape HLA-C protein expression levels.Nat. Commun. 2017; 815924Crossref PubMed Scopus (43) Google Scholar, 12Petersdorf E.W. O'hUigin C. The MHC in the era of next-generation sequencing: implications for bridging structure with function.Hum. Immunol. 2018; 80: 67-78Crossref PubMed Scopus (7) Google Scholar, 13Apps R. Qi Y. Carlson J.M. Chen H. Gao X. Thomas R. Yuki Y. Prete G.Q. Goulder P. Brumme Z.L. Brumme C.J. John M. Mallal S. Nelson G. Bosch R. Heckerman D. Stein J.L. Soderberg K.A. Moody A.M. Denny T.N. Zeng X. Fang J. Moffett A. Lifson J.D. Goedert J.J. Buchbinder S. Kirk G.D. Fellay J. McLaren P. Deeks S.G. Pereyra F. Walker B. Michael N.L. Weintrob A. Wolinsky S. Liao W. Carrington M. Influence of HLA-C expression level on HIV control.Science. 2013; 340: 87-91Crossref PubMed Scopus (240) Google Scholar, 14Jung E. Cheon J. Lee J. Park S. Jang H. Chung S. Park M. Kim T.-G. Oh H.-B. Yang S.-K. Park S. Han J. Hong S. Kim T. Kim W. Lee M. HLA-C*01 is a risk factor for Crohn's disease.Inflamm. Bowel Dis. 2016; 22: 796-806Crossref PubMed Scopus (7) Google Scholar, 15Miyadera H. Ohashi J. Lernmark Å. Kitamura T. Tokunaga K. Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA.J. Clin. Invest. 2015; 125: 275-291Crossref PubMed Scopus (43) Google Scholar, 16Zhou Z. Jensen P.E. Structural characteristics of HLA-DQ that may impact DM editing and susceptibility to type-1 diabetes.Front. Immunol. 2013; 4: 262Crossref PubMed Scopus (17) Google Scholar, 17Hu X. Deutsch A.J. Lenz T.L. Onengut-Gumuscu S. Han B. Chen W.-M. Howson J.M. Todd J.A. de Bakker P.I. Rich S.S. Raychaudhuri S. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk.Nat. Genet. 2015; 47ng.3353Crossref Scopus (101) Google Scholar, 18Beksac M. Gragert L. Fingerson S. Maiers M. Zhang M.-J. Albrecht M. Zhong X. Cozen W. Dispenzieri A. Lonial S. Hari P. HLA polymorphism and risk of multiple myeloma.Leukemia. 2016; 302260Crossref PubMed Scopus (8) Google Scholar). Most HLA disease associations that were reported over the last 50 years are related to the immune system, but the exact mechanisms driving the associations remain largely elusive. single-nucleotide polymorphisms genome-wide association studies genome-wide transcript quantitative trait loci immunopeptidome-wide association studies data-dependent acquisition. The HLA is divided into two main subclasses: class I, which include the classical HLA-A, HLA-B and HLA-C molecules, as well as the nonclassical HLA-E, HLA-F and HLA-G molecules; and class II, which includes HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRB2, HLA-DRB3, HLA-DRB4, and HLA-DRB5 molecules (Fig. 1A) (19Dendrou C.A. Petersen J. Rossjohn J. Fugger L. HLA variation and disease.Nat. Rev. Immunol. 2018; 8: 193Google Scholar). To date, more than 23,000 different classical HLA alleles have been identified (https://www.ebi.ac.uk/ipd/imgt/hla/stats.html) and this number may keep climbing up to nearly 8–9 million HLA variants (Fig. 1B) (20Robinson J. Guethlein L.A. Cereb N. Yang S. Norman P.J. Marsh S.G. Parham P. Distinguishing functional polymorphism from random variation in the sequences of >10,000 HLA-A, -B and -C alleles.PLOS Genet. 2017; 13e1006862Crossref PubMed Scopus (57) Google Scholar). The role of HLA molecules is to present a repertoire of peptides at the cell surface for T-cell recognition. The non-random amino acid composition of those peptides is restricted by length, generally between 8 and 12 (can be up to 15) amino acids for class I and between 13 and 25 amino acids for class II, and by the presence of allele-specific binding motifs (21Falk K. Rötzschke O. Stevanovic S. Jung G. Rammensee H.-G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules.Nature. 1991; 351: 290-296Crossref PubMed Scopus (2023) Google Scholar). Therefore, the nature of those peptides and the extreme diversity of HLA alleles at the population level greatly enhances the complexity of the peptide repertoires, which are collectively termed as the human immunopeptidome (22Caron E. Aebersold R. Banaei-Esfahani A. Chong C. Bassani-Sternberg M. A case for a human Immuno-Peptidome Project Consortium.Immunity. 2017; 47: 203-208Abstract Full Text Full Text PDF PubMed Scopus (34) Google Scholar, 23Admon A. Bassani-Sternberg M. The Human Immunopeptidome Project, a suggestion for yet another postgenome next big thing.Mol. Cell. Proteomics. 2011; 10 (O111.011833)Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar). T cells scan the HLA immunopeptidome and seek for "abnormal" peptides that originate from metabolic perturbations, pathogenic sources or neoplastic transformations (24Croft N.P. Smith S.A. Pickering J. Sidney J. Peters B. Faridi P. Witney M.J. Sebastian P. Flesch I.E. Heading S.L. Sette A. Gruta N.L. Purcell A.W. Tscharke D.C. Most viral peptides displayed by class I MHC on infected cells are immunogenic.Proc. Natl. Acad. Sci. U.S.A. 2019; 73: 3112-3117Crossref Scopus (16) Google Scholar, 25Wu T. Guan J. Handel A. Tscharke D.C. Sidney J. Sette A. Wakim L.M. Sng X.Y. Thomas P.G. Croft N.P. Purcell A.W. Gruta N.L. Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses.Nat. Commun. 2019; 102846Crossref PubMed Scopus (23) Google Scholar, 26Schumacher T.N. Scheper W. Kvistborg P. Cancer neoantigens.Annu Rev. Immunol. 2018; 37: 173-200Crossref PubMed Scopus (52) Google Scholar, 27Gilchuk P. Spencer C.T. Conant S.B. Hill T. Gray J.J. Niu X. Zheng M. Erickson J.J. Boyd K.L. McAfee J.K. Oseroff C. Hadrup S.R. Bennink J.R. Hildebrand W. Edwards Jr., K.M. J. E. Williams J.V. Buus S. Sette A. humacher T.N. Link A.J. Joyce S. Discovering naturally processed antigenic determinants that confer protective T cell immunity.J. Clin. Invest. 2013; 123: 1976-1987Crossref PubMed Scopus (43) Google Scholar, 28Caron E. Vincent K. Fortier M. Laverdure J. Bramoullé A. Hardy M. Voisin G. Roux P.P. Lemieux S. Thibault P. Perreault C. The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation.Mol. Syst. Biol. 2011; 7: 533Crossref PubMed Scopus (71) Google Scholar). Those abnormal cells are then eradicated once engaged by T cells. The extreme diversity of the human immunopeptidome maximizes the probability that at least some individuals within the world population can mount a T-cell attack against an emerging infection and survive (29Messaoudi I. Patiño J.A. Dyall R. LeMaoult J. Nikolich-Žugich J. Direct link between mhc polymorphism, T cell avidity, and diversity in immune defense.Science. 2002; 298: 1797-1800Crossref PubMed Scopus (239) Google Scholar). This is exemplified by the HIV epidemic and evidences that HLA-B57 individuals are more likely protected against HIV (30Migueles S.A. Sabbaghian S.M. Shupert L.W. Bettinotti M.P. Marincola F.M. Martino L. Hallahan C.W. Selig S.M. Schwartz D. Sullivan J. Connors M. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors.Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 2709-2714Crossref PubMed Scopus (766) Google Scholar, 31Kaslow R.A. Carrington M. Apple R. Park L. Muñoz A. Saah A.J. Goedert J.J. Winkler C. O'Brien S.J. Rinaldo C. Detels R. Blattner W. Phair J. Erlich H. Mann D.L. Influence of combinations of human major histocompatibility complex genes on the course of HIV–1 infection.Nat. Med. 1996; 2: 405-411Crossref PubMed Scopus (0) Google Scholar). However, such evolutionary advantage comes with the price of disease susceptibility. In fact, individuals expressing specific HLA alleles are more susceptible to suffer from specific auto-inflammatory and autoimmune diseases. For instance, birdshot chorioretinopathy was shown to be associated with HLA-A29, ankylosing spondylitis with HLA-B27, Behçet's disease with HLA-B51 and psoriasis with HLA-C06. Combinations of endoplasmic reticulum aminopeptidases (ERAP) 1 haplotypes, involved in trimming HLA-associated peptides, are also risk factors for these diseases in people that have specific HLAs (e.g. HLA-B27*05) (32de Castro J.A. How ERAP1 and ERAP2 shape the peptidomes of disease-associated MHC-I proteins.Front Immunol. 2018; 92463Crossref PubMed Scopus (49) Google Scholar, 33Matzaraki V. Kumar V. Wijmenga C. Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases.Genome Biol. 2017; 18: 76Crossref PubMed Scopus (142) Google Scholar, 34Reeves E. James E. The role of polymorphic ERAP1 in autoinflammatory disease.Bioscience Rep. 2018; 38BSR20171503Crossref PubMed Scopus (0) Google Scholar, 35Unanue E.R. Turk V. Neefjes J. Variations in MHC class II antigen processing and presentation in health and disease.Annu. Rev. Immunol. 2015; 34: 265-297Crossref Scopus (69) Google Scholar). Moreover, an increasing number of GWAS results indicate that amino acid polymorphisms associated with immune diseases are likely affecting binding affinities of peptides within the groove of HLA proteins, and thus, affecting the repertoire of peptides presented to T cells that are capable of triggering or perpetuating human diseases (10Trowsdale J. Knight J.C. Major histocompatibility complex genomics and human disease.Annu. Rev. Genom. Hum. G. 2012; 14: 301-323Crossref Scopus (252) Google Scholar, 12Petersdorf E.W. O'hUigin C. The MHC in the era of next-generation sequencing: implications for bridging structure with function.Hum. Immunol. 2018; 80: 67-78Crossref PubMed Scopus (7) Google Scholar, 19Dendrou C.A. Petersen J. Rossjohn J. Fugger L. HLA variation and disease.Nat. Rev. Immunol. 2018; 8: 193Google Scholar, 36Waage J. Standl M. Curtin J.A. Jessen L.E. Thorsen J. Tian C. Schoettler N. Flores C. Abdellaoui A. Ahluwalia T.S. Alves A.C. Amaral A.F. Antó J.M. Arnold A. Barreto-Luis A. Baurecht H. van Beijsterveldt C.E. Bleecker E.R. Bonàs-Guarch S. Boomsma D.I. Brix S. Bunyavanich S. Burchard E.G. Chen Z. Curjuric I. Custovic A. den Dekker H.T. Dharmage S.C. Dmitrieva J. Duijts L. Ege M.J. Gauderman J.W. Georges M. Gieger C. Gilliland F. Granell R. Gui H. Hansen T. Heinrich J. Henderson J. Hernandez-Pacheco N. Holt P. Imboden M. Jaddoe V.W. Jarvelin M.-R. Jarvis D.L. Jensen K.K. Jónsdóttir I. Kabesch M. Kaprio J. Kumar A. Lee Y.-A. Levin A.M. Li X. Lorenzo-Diaz F. Melén E. Mercader J.M. Meyers D.A. Myers R. Nicolae D.L. Nohr E.A. Palviainen T. Paternoster L. Pennell C.E. Pershagen G. Pino-Yanes M. Probst-Hensch N.M. Rüschendorf F. Simpson A. Stefansson K. Sunyer J. Sveinbjornsson G. Thiering E. Thompson P.J. Torrent M. Torrents D. Tung J.Y. Wang C.A. Weidinger S. Weiss S. Willemsen G. Williams K.L. Ober C. Hinds D.A. Ferreira M.A. Bisgaard H. Strachan D.P. Bønnelykke K. Team, T., collaborators, A.Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis.Nat. Genet. 2018; 50: 1072-1080Crossref PubMed Scopus (20) Google Scholar, 37Ferreiro-Iglesias A. Lesseur C. McKay J. Hung R.J. Han Y. Zong X. Christiani D. Johansson M. Xiao X. Li Y. Qian D.C. Ji X. Liu G. Caporaso N. Scelo G. Zaridze D. Mukeriya A. Kontic M. Ognjanovic S. Lissowska J. Szołkowska M. Swiatkowska B. Janout V. Holcatova I. Bolca C. Savic M. Ognjanovic M. Bojesen S. Wu X. Albanes D. Aldrich M.C. Tardon A. Fernandez-Somoano A. Fernandez-Tardon G. Marchand L. Rennert G. Chen C. Doherty J. Goodman G. Bickeböller H. Wichmann H.-E. Risch A. Rosenberger A. Shen H. Dai J. Field J.K. Davies M. Woll P. Teare D.M. Kiemeney L.A. van der Heijden E.H. Yuan J.-M. Hong Y.-C. Haugen A. Zienolddiny S. Lam S. Tsao M.-S. Johansson M. Grankvist K. Schabath M.B. Andrew A. Duell E. Melander O. Brunnström H. Lazarus P. Arnold S. Slone S. Byun J. Kamal A. Zhu D. Landi M. Amos C.I. Brennan P. Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity.Nat. Commun. 2018; 93927Crossref PubMed Scopus (6) Google Scholar, 38Tian C. Hromatka B.S. Kiefer A.K. Eriksson N. Noble S.M. Tung J.Y. Hinds D.A. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections.Nat. Commun. 2017; 8: 599Crossref PubMed Scopus (95) Google Scholar, 39Betz R.C. Petukhova L. Ripke S. Huang H. Menelaou A. Redler S. Becker T. Heilmann S. Yamany T. Duvic M. Hordinsky M. Norris D. Price V.H. Mackay-Wiggan J. de Jong A. DeStefano G.M. Moebus S. Böhm M. Blume-Peytavi U. Wolff H. Lutz G. Kruse R. Bian L. Amos C.I. Lee A. Gregersen P.K. Blaumeiser B. Altshuler D. Clynes R. de Bakker P.I. Nöthen M.M. Daly M.J. Christiano A.M. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci.Nat. Commun. 2015; 65966Crossref PubMed Scopus (108) Google Scholar, 40Wang T. Zhou T. He Y. Xue W. Zhang J. Zheng X. Li X. Zhang S. Zeng Y. Jia W. Fine-mapping of HLA class I and class II genes identified two independent novel variants associated with nasopharyngeal carcinoma susceptibility.Cancer Med. 2018; 7: 6308-6316Crossref PubMed Scopus (1) Google Scholar, 41Lu Y. Kweon S.-S. Tanikawa C. Jia W.-H. Xiang Y.-B. Cai Q. Zeng C. Schmit S.L. Shin A. Matsuo K. Jee S. Kim D.-H. Kim J. Wen W. Shi J. Guo X. Li B. Wang N. Zhang B. Li X. Shin M.-H. Li H.-L. Ren Z. Oh J. Oze I. Ahn Y.-O. Jung K. Conti D.V. Schumacher F.R. Rennert G. Jenkins M.A. Campbell P.T. Hoffmeister M. Casey G. Gruber S.B. Gao J. Gao Y.-T. Pan Z.-Z. Kamatani Y. Zeng Y.-X. Shu X.-O. Long J. Matsuda K. Zheng W. Large-scale genome-wide association study of east asians identifies loci associated with risk for colorectal cancer.Gastroenterology. 2018; 156: 1455-1466Abstract Full Text Full Text PDF PubMed Scopus (16) Google Scholar, 42Scepanovic P. Alanio C. Hammer C. Hodel F. Bergstedt J. Patin E. Thorball C.W. Chaturvedi N. Charbit B. Abel L. Quintana-Murci L. Duffy D. Albert M.L. Fellay J. Consortium MHuman genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines.Genome Med. 2018; 10: 59Crossref PubMed Scopus (41) Google Scholar, 43Sveinbjornsson G. Gudbjartsson D.F. Halldorsson B.V. Kristinsson K.G. Gottfredsson M. Barrett J.C. Gudmundsson L.J. Blondal K. Gylfason A. Gudjonsson S. Helgadottir H.T. Jonasdottir A. Jonasdottir A. Karason A. Kardum L. Knežević J. Kristjansson H. Kristjansson M. Love A. Luo Y. Magnusson O.T. Sulem P. Kong A. Masson G. Thorsteinsdottir U. Dembic Z. Nejentsev S. Blondal T. Jonsdottir I. Stefansson K. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry.Nat. Genet. 2016; 48: 318-322Crossref PubMed Google Scholar, 44Sud A. Thomsen H. Law P.J. Försti A. da Filho M. Holroyd A. Broderick P. Orlando G. Lenive O. Wright L. Cooke R. Easton D. Pharoah P. Dunning A. Peto J. Canzian F. Eeles R. Kote-Jarai Zs. Muir K. Pashayan N. Hoffmann P. Nöthen M.M. Jöckel K-H von Strandmann E. Lightfoot T. Kane E. Roman E. Lake A. Montgomery D. Jarrett R.F. Swerdlow A.J. Engert A. Orr N. Hemminki K. Houlston R.S. consortium, TGenome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility.Nat. Commun. 2017; 81892Crossref PubMed Scopus (14) Google Scholar, 45Okada Y. Momozawa Y. Sakaue S. Kanai M. Ishigaki K. Akiyama M. Kishikawa T. Arai Y. Sasaki T. Kosaki K. Suematsu M. Matsuda K. Yamamoto K. Kubo M. Hirose N. Kamatani Y. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese.Nat. Commun. 2018; 91631Crossref PubMed Scopus (55) Google Scholar). Interestingly, those evidences obtained from GWAS, meta-analysis and HLA region fine-mapping studies point toward a fundamental role of the immunopeptidome in driving human diseases. We highlight below four cases of such studies: (1) in allergic rhinitis, the most common clinical presentation of allergy affecting 400 million people worldwide, a recent meta-analysis including 59,762 cases and 152,358 controls from European ancestry, confirmed in a replication phase of 60,720 cases and 618,527 controls, indicated that the strongest associated amino acid variants in HLA-DQB1 and HLA-B were both located in the peptide-binding groove (36Waage J. Standl M. Curtin J.A. Jessen L.E. Thorsen J. Tian C. Schoettler N. Flores C. Abdellaoui A. Ahluwalia T.S. Alves A.C. Amaral A.F. Antó J.M. Arnold A. Barreto-Luis A. Baurecht H. van Beijsterveldt C.E. Bleecker E.R. Bonàs-Guarch S. Boomsma D.I. Brix S. Bunyavanich S. Burchard E.G. Chen Z. Curjuric I. Custovic A. den Dekker H.T. Dharmage S.C. Dmitrieva J. Duijts L. Ege M.J. Gauderman J.W. Georges M. Gieger C. Gilliland F. Granell R. Gui H. Hansen T. Heinrich J. Henderson J. Hernandez-Pacheco N. Holt P. Imboden M. Jaddoe V.W. Jarvelin M.-R. Jarvis D.L. Jensen K.K. Jónsdóttir I. Kabesch M. Kaprio J. Kumar A. Lee Y.-A. Levin A.M. Li X. Lorenzo-Diaz F. Melén E. Mercader J.M. Meyers D.A. Myers R. Nicolae D.L. Nohr E.A. Palviainen T. Paternoster L. Pennell C.E. Pershagen G. Pino-Yanes M. Probst-Hensch N.M. Rüschendorf F. Simpson A. Stefansson K. Sunyer J. Sveinbjornsson G. Thiering E. Thompson P.J. Torrent M. Torrents D. Tung J.Y. Wang C.A. Weidinger S. Weiss S. Willemsen G. Williams K.L. Ober C. Hinds D.A. Ferreira M.A. Bisgaard H. Strachan D.P. Bønnelykke K. Team, T., collaborators, A.Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis.Nat. Genet. 2018; 50: 1072-1080Crossref PubMed Scopus (20) Google Scholar); (2) in lung cancer, analysis of HLA genetic variation among 26,044 lung cancer patients and 20,836 controls revealed amino acid variants in the HLA-B*08:01 peptide-binding groove (37Fe
Referência(s)