Filter Initialization with Three-Dimensional Lidar Images in Proximity to Small Bodies
2019; American Institute of Aeronautics and Astronautics; Volume: 43; Issue: 2 Linguagem: Inglês
10.2514/1.g004468
ISSN1533-3884
Autores Tópico(s)Inertial Sensor and Navigation
ResumoNo AccessEngineering NotesFilter Initialization with Three-Dimensional Lidar Images in Proximity to Small BodiesAnn B. Dietrich and Jay W. McMahonAnn B. DietrichUniversity of Colorado Boulder, Boulder, Colorado 80309*Precision Navigation, Charles Stark Draper Laboratory, Cambridge, MA 02139.Search for more papers by this author and Jay W. McMahonUniversity of Colorado Boulder, Boulder, Colorado 80309†Assistant Professor, Ann and H.J. Smead Aerospace Engineering Sciences, 431 UCB.Search for more papers by this authorPublished Online:24 Dec 2019https://doi.org/10.2514/1.G004468SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Broschart S., Bhaskaran S., Bellerose J., Dietrich A., Han D., Haw R., Mastrodemos N., Owen W. M., Rush B. and Surovik D., “Shadow Navigation Support at JPL for the Rosetta Landing on Comet 67P/Churyumov-Gerasimenko,” 26th International Symposium on Space Flight Dynamics, ISSFD Paper ISSFD-2017-096, 2017. Google Scholar[2] Jackman C. D., Nelson D. S., McCarthy L. K., Finley T. J., Liounis A. J., Getzandanner K. M., Antreasian P. G. and Moreau M. C., “Optical Navigation Concept of Operations for the OSIRIS-REX Mission,” AAS/AIAA Spaceflight Mechanics Meeting, AAS Paper 17-489, Springfield, VA, 2017, pp. 1–18. Google Scholar[3] Dietrich A. and McMahon J. W., “Orbit Determination Using Flash Lidar Around Small Bodies,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 3, 2017, pp. 650–665. https://doi.org/10.2514/1.G000615 LinkGoogle Scholar[4] Bordi J. J., Miller J. K., Williams B. G., Nerem R. S. and Pelletier F. J., “The Impact of Altimeter Range Observations on Near Navigation,” Astrodynamics Specialist Conference, AIAA Paper 2000-4423, 2000, pp. 486–496. https://doi.org/10.2514/6.2000-4423 Google Scholar[5] Abrahamson M. and Bhakskaran S., “LIDAR and Optical-Based Autonomous Navigation for Small Body Proximity Operations,” AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 14-420, Springfield,VA, 2014. Google Scholar[6] McMahon J. W., Scheeres D. J. and Berry K., “Asteroid Proximity Navigation Using Direct Altimetry Measurements,” AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 14-354, Springfield,VA, 2014. Google Scholar[7] Roback V. E., Amzajerdian F., Bulyshev A. E., Brewster P. F., Bruce W. and Langley N., “3D Flash Lidar Performance in Flight Testing on the Morpheus Autonomous, Rocket-Propelled Lander to a Lunar-Like Hazard Field,” Proceedings of SPIE, Vol. 9832, Laser Radar Technology and Applications XXI, 983209, 2016, SPIE, Bellingham, WA, pp. 1–20. https://doi.org/10.1117/12.2223916. Google Scholar[8] Rohrschneider R. R. and Tandy W., “Pose Determination Using Only 3D Range Images from the STORRM Mission,” 36th Annual AAS Guidance and Control Conference, AAS Paper 13-104, Springfield,VA, 2013. Google Scholar[9] Dietrich A., “Supporting Autonomous Navigation with Flash Lidar Images in Proximity to Small Celestial Bodies,” Ph.D. Thesis, Univ. of Colorado, Boulder, CO, Aug. 2017. Google Scholar[10] Lorenz D. A., Mario C., Daly M., Olds R., Perry M. E., May A. and Palmer E. E., “Lessons Learned from OSIRIS-REx Autonomous Navigation Using Natural Feature Tracking,” 2017 IEEE Aerospace Conference, IEEE, New York, 2017, pp. 1–12. https://doi.org/10.1109/AERO.2017.7943684 Google Scholar[11] Ruel S., Luu T., Anctil M. and Gagnon S., “Target Localization from 3D Data for On-Orbit Autonomous Rendezvous & Docking,” 2008 IEEE Aerospace Conference, IEEE, New York, 2008, pp. 1–12. https://doi.org/10.1109/AERO.2008.4526516 Google Scholar[12] Ruel S., Luu T. and Berube A., “Space Shuttle Testing of the TriDAR 3D Rendezvous and Docking Sensor,” Journal of Field Robotics, Vol. 29, No. 4, 2012, pp. 535–553. https://doi.org/10.1002/rob.20420 CrossrefGoogle Scholar[13] Opromolla R., Fasano G., Rufino G. and Grassi M., “Pose Estimation for Spacecraft Relative Navigation Using Model-Based Algorithms,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 1, 2017, pp. 431–447. https://doi.org/10.1109/TAES.2017.2650785 CrossrefGoogle Scholar[14] Rhodes A. P., Christian J. A. and Evans T., “A Concise Guide to Feature Histograms with Applications to LIDAR-Based Spacecraft Relative Navigation,” Journal of the Astronautical Sciences, Vol. 64, No. 4, 2017, pp. 414–445. https://doi.org/10.1007/s40295-016-0108-y CrossrefGoogle Scholar[15] Besl P. J. and McKay N. D., “A Method for Registration of 3-D Shapes,” Proceedings of SPIE, Vol. 1611, Sensor Fusion IV: Control Paradigms and Data Structures, 1992, pp. 586–606. https://doi.org/10.1117/12.57955 CrossrefGoogle Scholar[16] Olson E. B., “Real-Time Correlative Scan Matching,” IEEE International Conference on Robotics and Automation (ICRA), May 2009, IEEE, New York, pp. 4387–4393, http://toc.proceedings.com/05565webtoc.pdf. https://doi.org/10.1109/ROBOT.2009.5152375 Google Scholar[17] Bachrach A., Prentice S., He R. and Roy N., “RANGE—Robust Autonomous Navigation in GPS-Denied Environments,” Journal of Field Robotics, Vol. 28, No. 5, 2011, pp. 644–666. https://doi.org/10.1002/rob.20400 CrossrefGoogle Scholar[18] Dietrich A. and McMahon J. W., “Robust Orbit Determination with Flash Lidar Around Small Bodies,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 10, 2018, pp. 2163–2184. https://doi.org/10.2514/1.G003023 LinkGoogle Scholar[19] Craig R. and Earhart P., “Optical Sensors for Space Proximity Operations,” Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA, Washington, D.C., 2009, Paper PThB2. https://doi.org/10.1364/IQEC.2009.PThB2 Google Scholar[20] Dietrich A. and McMahon J. W., “Orbit Determination with Least-Squares and Flash Lidar Measurements in Proximity to Small Bodies,” 27th AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 17-276, Springfield, VA, 2017, pp. 955–974. Google Scholar[21] Rohrschneider R. R., Masciarelli J., Miller K. L. and Weimer C., “An Overview of Ball Flash LIDAR and Related Technology Development,” AIAA Guidance, Navigation, and Control (GNC) Conference, AIAA Paper 2013-4642, Aug. 2013. https://doi.org/10.2514/6.2013-4642 LinkGoogle Scholar[22] Cheng Y., Johnson A. E., Matthies L. H. and Olson C. F., “Optical Landmark Detection for Spacecraft Navigation,” AAS/AIAA Spaceflight Mechanics Meeting, AAS Paper 03-224, Springfield, VA, 2003, pp. 1785–1804. Google Scholar[23] Johnson A. E., Ansar A. and Matthies L. H., “A General Approach to Terrain Relative Navigation for Planetary Landing,” AIAA [email protected] 2007 Conference and Exhibit, AIAA Paper 2007-2854, 2007, pp. 7–10. https://doi.org/10.2514/6.2007-2854 Google Scholar[24] Mourikis A. I., Trawny N., Roumeliotis S. I., Johnson A. and Matthies L., “Vision-Aided Inertial Navigation for Precise Planetary Landing: Analysis and Experiments,” Robotics: Science and Systems, edited by Burgard W., Brock O. and Stachniss C., MIT Press, Cambridge, MA, 2008, https://ieeexplore.ieee.org/document/6280126. Google Scholar[25] Mastrodemos N., Rush B., Vaughan D. and Owen B., “Optical Navigation for Dawn at Vesta,” Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 11-222, Springfield, VA, 2011. Google Scholar[26] Christian J. A., “Accurate Planetary Limb Localization for Image-Based Spacecraft Navigation,” Journal of Spacecraft and Rockets, Vol. 54, No. 3, 2017, pp. 708–730. https://doi.org/10.2514/1.A33692 LinkGoogle Scholar[27] Li Y. and Olson E. B., “Extracting General-Purpose Features from LIDAR Data,” 2010 IEEE International Conference on Robotics and Automation, IEEE, New York, 2010, pp. 1388–1393. https://doi.org/10.1109/ROBOT.2010.5509690 Google Scholar[28] Tapley B. D., Schutz B. E. and Born G. H., Statistical Orbit Determination, Elsevier, Burlington, MA, 2004, pp. 11, 13, 203–205. Google Scholar[29] Nolan M. C., Magri C., Howell E. S., Benner L. A., Giorgini J. D., Hergenrother C. W., Hudson R. S., Lauretta D. S., Margot J.-L., Ostro S. J. and et al., “Shape Model and Surface Properties of the OSIRIS-REx Target Asteroid (101955) Bennu from Radar and Lightcurve Observations,” Icarus, Vol. 226, No. 1, 2013, pp. 629–640. https://doi.org/10.1016/j.icarus.2013.05.028 CrossrefGoogle Scholar[30] Gelb A., Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974, p. 190. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byShape and Pole Estimation for Small-Bodies on ApproachDahlia Baker and Jay W. McMahon29 December 2021Pose Initialization of Uncooperative Spacecraft by Template Matching with Sparse Point CloudWulong Guo , Weiduo Hu, Chang Liu and Tingting Lu7 July 2021 | Journal of Guidance, Control, and Dynamics, Vol. 44, No. 9 What's Popular Volume 43, Number 2February 2020 CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAsteroidsInterdisciplinary TopicsLasers and Laser ApplicationsLight Detection and RangingPlanetary Science and ExplorationPlanetsSolar PhysicsSpace Science and Technology KeywordsLIDAR SensorAsteroidsEuler AnglesKalman FilterSimultaneous Localization and MappingStar TrackerAnnealingAutonomous NavigationAlgorithms ConvergenceAutonomous Rendezvous and DockingPDF Received17 March 2019Accepted7 October 2019Published online24 December 2019
Referência(s)