Artigo Acesso aberto Produção Nacional Revisado por pares

An Amazon stingless bee foraging activity predicted using recurrent artificial neural networks and attribute selection

2020; Nature Portfolio; Volume: 10; Issue: 1 Linguagem: Inglês

10.1038/s41598-019-56352-8

ISSN

2045-2322

Autores

Pedro Gomes, Yoshihiko Suhara, Patrícia Nunes‐Silva, Luciano Costa, Helder Arruda, G. C. Venturieri, Vera Lúcia Imperatriz-Fonseca, Alex Pentland, Paulo de Souza, Gustavo Pessin,

Tópico(s)

Insect and Pesticide Research

Resumo

Abstract Bees play a key role in pollination of crops and in diverse ecosystems. There have been multiple reports in recent years illustrating bee population declines worldwide. The search for more accurate forecast models can aid both in the understanding of the regular behavior and the adverse situations that may occur with the bees. It also may lead to better management and utilization of bees as pollinators. We address an investigation with Recurrent Neural Networks in the task of forecasting bees’ level of activity taking into account previous values of level of activity and environmental data such as temperature, solar irradiance and barometric pressure. We also show how different input time windows, algorithms of attribute selection and correlation analysis can help improve the accuracy of our model.

Referência(s)