Optimal order picker routing in a conventional warehouse with two blocks and arbitrary starting and ending points of a tour
2020; Taylor & Francis; Volume: 58; Issue: 17 Linguagem: Inglês
10.1080/00207543.2020.1724342
ISSN1366-588X
AutoresMakusee Masae, C. H. Glock, Panupong Vichitkunakorn,
Tópico(s)Robotic Path Planning Algorithms
ResumoThis paper investigates manual order picking, where workers travel through the warehouse to retrieve requested items from shelves. To minimise the completion time of orders, researchers have developed various routing procedures that guide order pickers through the warehouse. The paper at hand contributes to this stream of research and proposes an optimal order picker routing policy for a conventional warehouse with two blocks and arbitrary starting and ending points of a tour. The procedure proposed in this paper extends an earlier work of Löffler et al. (2018. Picker routing in AGV-assisted order picking systems, Working Paper, DPO-01/2018, Deutsche Post Chair-Optimization of Distribution Networks, RWTH Aachen University, 2018) by applying the concepts of Ratliff and Rosenthal (1983. “Order-picking in a Rectangular Warehouse: a Solvable Case of the Traveling Salesman Problem.” Operations Research 31 (3): 507–521) and Roodbergen and de Koster (2001a. “Routing Order Pickers in a Warehouse with a Middle Aisle.” European Journal of Operational Research 133 (1): 32–43) that used graph theory and dynamic programming for finding an optimal picker route. We also propose a routing heuristic, denoted S*-shape, for conventional two-block warehouses with arbitrary starting and ending points of a tour. In computational experiments, we compare the average order picking tour length in a conventional warehouse with a single block to the case of a conventional warehouse with two blocks to assess the impact of the middle cross aisle on the performance of the warehouse. Furthermore, we evaluate the performance of the S*-shape heuristic by comparing it to the exact algorithm proposed in this study.
Referência(s)