Artigo Revisado por pares

Characterization of Post-shock Thermal Striations on a Cone/Flare

2020; American Institute of Aeronautics and Astronautics; Volume: 58; Issue: 5 Linguagem: Inglês

10.2514/1.j059095

ISSN

1533-385X

Autores

Carson L. Running, Thomas J. Juliano, Matthew P. Borg, Roger L. Kimmel,

Tópico(s)

Combustion and Detonation Processes

Resumo

No AccessTechnical NotesCharacterization of Post-shock Thermal Striations on a Cone/FlareCorrections for this articleCorrection: Characterization of Post-Shock Thermal Striations on a Cone/FlareCarson L. Running, Thomas J. Juliano, Matthew P. Borg and Roger L. KimmelCarson L. RunningUniversity of Notre Dame, Notre Dame, Indiana 46556, Thomas J. JulianoUniversity of Notre Dame, Notre Dame, Indiana 46556, Matthew P. BorgU.S. Air Force Research Laboratory, Wright–Patterson Air Force Base, Ohio 45433 and Roger L. KimmelU.S. Air Force Research Laboratory, Wright–Patterson Air Force Base, Ohio 45433Published Online:27 Feb 2020https://doi.org/10.2514/1.J059095SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Anderson J., Hypersonic and High Temperature Gas Dynamics, 2nd ed., AIAA, Reston, VA, 2006, Chaps. 6–7. https://doi.org/10.2514/4.861956 LinkGoogle Scholar[2] Arnal D. and Délery J., "Laminar-Turbulent Transition and Shock Wave/Boundary Layer Interaction," the von Karman Inst., TR-RTO-EN-AVT 116, Rhode-St-Genese, Belgium, Dec. 2005. Google Scholar[3] de la Chevaleria D. A., Fonteneau A., Luca L. D. and Cardone G., "Görtler-Type Vortices in Hypersonic Flows: The Ramp Problem," Experimental Thermal and Fluid Science, Vol. 15, No. 2, 1997, pp. 69–81. https://doi.org/10.1016/S0894-1777(97)00051-4 Google Scholar[4] Dwivedi A., Sidharth G. S., Nichols J. W., Candler G. V. and Jovanovic M. R., "Reattachment Streaks in Hypersonic Compression Ramp Flow: An Input-Output Analysis," Journal of Fluid Mechanics, Vol. 880, No. 10, 2019, pp. 113–135. https://doi.org/10.1017/jfm.2019.702 Google Scholar[5] Roghelia A., Chuvakhov P., Olivier H. and Egorov I., "Experimental Investigation of Görtler Vortices in Hypersonic Ramp Flows Behind Sharp and Blunt Leading Edges," AIAA Paper 2017-3463, June 2017. https://doi.org/10.2514/6.2017-3463 Google Scholar[6] Ginoux J. J., "Streamwise Vortices in Reattaching High-Speed Flows: A Suggested Approach," AIAA Journal, Vol. 9, No. 4, 1971, pp. 759–760. https://doi.org/10.2514/3.6271 LinkGoogle Scholar[7] Heffner K., Chpoun A. and Lengrand J., "Experimental Study of Transitional Axisymmetric Shock-Boundary Layer Interactions at Mach 5," AIAA Paper 1993-3131, July 1993. https://doi.org/10.2514/6.1993-3131 Google Scholar[8] Benay R., Chanetz B., Mangin B., Vandomme L. and Perraud J., "Shock Wave/Transitional Boundary-Layer Interactions in Hypersonic Flow," AIAA Journal, Vol. 44, No. 6, 2006, pp. 1243–1254. https://doi.org/10.2514/1.10512 LinkGoogle Scholar[9] Ciolkosz L. D. and Spina E. F., "An Experimental Study of Görtler Vortices in Compressible Flow," AIAA Paper 2006-4512, July 2006. https://doi.org/10.2514/6.2006-4512 Google Scholar[10] Vermeulen J. P. and Simeonides G., "Parametric Studies of Shock Wave/Boundary Layer Interactions over 2D Compression Corners at Mach 6," von Kármán Inst. for Fluid Dynamics TR 181, Sint-Genesius-Rode, Belgium, Sept. 1992. Google Scholar[11] de Luca L., Cardone G., de la Chevalerie D. and Fonteneau A., "Viscous Interaction Phenomena in Hypersonic Wedge Flow," AIAA Journal, Vol. 33, No. 12, 1995, pp. 2293–2298. https://doi.org/10.2514/3.12982 LinkGoogle Scholar[12] Roghelia A., Olivier H., Egorov I. and Chuvakhov P., "Experimental Investigation of Görtler Vortices in Hypersonic Ramp Flows," Experiments in Fluids, Vol. 58, No. 10, 2017, p. 139. https://doi.org/10.1007/s00348-017-2422-y CrossrefGoogle Scholar[13] Leinemann M., Radespiel R., Muñoz F., Esquieu S., McKiernan G. and Schneider S. P., "Boundary Layer Transition on a Generic Model of Control Flaps in Hypersonic Flow," AIAA Paper 2019-1908, Jan. 2019. https://doi.org/10.2514/6.2019-1908 LinkGoogle Scholar[14] Running C. L., Juliano T. J., Jewell J. S., Borg M. P. and Kimmel R. L., "Hypersonic Shock-Wave/Boundary-Layer Interactions on a Cone/Flare," Experimental Thermal and Fluid Science, Vol. 109, Dec. 2019, Paper 109911. https://doi.org/10.1016/j.expthermflusci.2019.109911 Google Scholar[15] Kimmel R. L., Borg M. P., Jewell J. S., Lam K., Bowersox R., Srinivasan R., Fuchs S. and Mooney T., "AFRL Ludwieg Tube Initial Performance," AIAA Paper 2017-0102, Jan. 2017. https://doi.org/10.2514/6.2017-0102 Google Scholar[16] Running C. L., Thompson M. J., Juliano T. J. and Sakaue H., "Boundary-Layer Separation Detection for a Cone at High Angle of Attack in Mach 4.5 Flow with Pressure-Sensitive Paint," AIAA Paper 2017-3120, June 2017. LinkGoogle Scholar[17] Running C. L., Sakaue H. and Juliano T. J., "Hypersonic Boundary-Layer Separation Detection with Pressure-Sensitive Paint for a Cone at High Angle of Attack," Experiments in Fluids, Vol. 60, No. 23, 2019, pp. 1–13. https://doi.org/10.1007/s00348-018-2665-2 Google Scholar[18] Boyd C. F. and Howell A., "Numerical Investigation of One-Dimensional Heat-Flux Calculations," Dahlgren Division Naval Surface Warfare Center Tech. Rept. NSWCDD/TR-94/114, Silver Spring, MD, Oct. 1994. Google Scholar[19] Juliano T. J., Adamczak D. W. and Kimmel R. L., "HIFiRE-5 Flight Test Heating Analysis," AIAA Paper 2014-0076, Jan. 2014. https://doi.org/10.2514/6.2014-0076 LinkGoogle Scholar[20] Labuda D. A., "Schlieren Imaging and Flow Analysis on a Cone/Flare Model in the AFRL Mach 6 Ludwieg Tube Facility," Master's Thesis, Air Force Inst. of Technology, Wright-Patterson AFB, OH, March 2019. Google Scholar[21] Asma C., Paris S. and Tapsoba M., "Transitional Shock-Wave Boundary Layer Interaction over a Cone-Flare Model at Hypersonic Conditions," ESASP Paper 487, Oct. 2002. Google Scholar[22] Holden M., Carr Z., MacLean M. and Wadhams T., "Measurements in Regions of Shock Wave/Turbulent Boundary Layer Interactions from Mach 5 to 6 at Flight Duplicated Velocities to Evaluate and Improve the Models of Turbulence in CFD Codes," AIAA Paper 2018-3706, June 2018. https://doi.org/10.2514/6.2018-3706 Google Scholar[23] Anderson J. D., Modern Compressible Flow: With Historical Perspective, 3rd ed., McGraw-Hill, New York, 2003, Chap. 10. Google Scholar[24] Ames Research Staff, "Equations, Tables, and Charts for Compressible Flow," NACA Tech. Rept. 1135, 1953. Google Scholar[25] Souverein L. J., Bakker P. G. and Dupont P., "A Scaling Analysis for Turbulent Shock-Wave/Boundary-Layer Interactions," Journal of Fluid Mechanics, Vol. 714, Jan. 2013, pp. 505–535. https://doi.org/10.1017/jfm.2012.495 CrossrefGoogle Scholar[26] Simeonides G., "Hypersonic Shock Wave Boundary Interactions over Simplified Deflected Control Surface Configurations," Special Course on Shock-Wave/Boundary-Layer Interaction in Supersonic and Hypersonic Flows, AGARD, 1993, pp. 7.1–7.47. Google Scholar[27] Simeonides G., "Hypersonic ShockWave Boundary Layer Interactions over Compression Corners," Ph.D. Thesis, U. Bristol/von Kármán Inst., April 1992. Google Scholar[28] Cöet M., Délery J. and Chanetz B., "Experimental Study of Shock Wave-Boundary Layer Interaction at High Mach Number with Entropy Layer Effect," Proceedings, IUTAM Symposium on Aerothermochemistry of Spacecraft and Associated Hypersonic Flows, edited by Brun R. and Chikkaoui A. A., Joeve, Marseille, 1992, pp. 338–343. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byHypersonic Shock-Wave/Boundary-Layer Interactions on the ROTEX-T Cone/FlareJonathan Davami, Thomas J. Juliano, Anton Scholten and Pedro Paredes19 January 2023Implementation of Self-Aligned Focusing Schlieren for Hypersonic Boundary Layer MeasurementsJonathan L. Hill, Matthew P. Borg, Elizabeth K. Benitez, Carson L. Running and Mark F. Reeder19 January 2023Boundary Layer Separation on a Hollow-Cylinder/Flare at Mach 5James A. Threadgill, Ashish Singh, Alejandro Roskelley Garcia and Jesse C. Little19 January 2023Boundary-Layer Instabilities over a Cone–Cylinder–Flare Model at Mach 6Pedro Paredes , Anton Scholten , Meelan M. Choudhari, Fei Li, Elizabeth K. Benitez and Joseph S. Jewell29 July 2022 | AIAA Journal, Vol. 60, No. 10A wrap-film technique for infrared thermography heat-transfer measurements in high-speed wind tunnelsExperimental Thermal and Fluid Science, Vol. 135Transitional shockwave/boundary layer interaction experiments in the R2Ch blowdown wind tunnel16 February 2022 | Experiments in Fluids, Vol. 63, No. 2Boundary-Layer Instabilities Over a Cone-Cylinder-Flare Model at Mach 6Pedro Paredes, Anton Scholten, Meelan M. Choudhari, Fei Li, Elizabeth K. Benitez and Joseph S. Jewell29 December 2021Streamwise Vortices from Controlled Roughnesses on a Cone-Cylinder-Flare at Mach 6Lauren N. Wagner, Steven P. Schneider and Joseph S. Jewell29 December 2021Global measurements of hypersonic shock-wave/boundary-layer interactions with pressure-sensitive paint10 April 2021 | Experiments in Fluids, Vol. 62, No. 5Related articlesCorrection: Characterization of Post-Shock Thermal Striations on a Cone/Flare3 Jun 2022AIAA Journal What's Popular Volume 58, Number 5May 2020 CrossmarkInformationCopyright © 2020 by Carson L. Running. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsAerothermodynamicsAviationAviation SafetyBoundary LayersFlight TestFlow RegimesFluid DynamicsOblique Shock WaveShock WavesThermodynamicsThermophysics and Heat TransferVortex DynamicsWind Tunnels KeywordsBoundary Layer SeparationFlow Visualization TechniquesFreestream Mach NumberHypersonic FlowsGortler VorticesAir Force Research LaboratoryFlight TestingWind Tunnel TestsWall TemperatureFORTRANAcknowledgmentsThe authors thank Lieutenant Michael Rynders, AFRL/RQHF, for his support conducting these tests in AFRL's Mach-6 Ludwieg Tube. In addition, thanks goes out to Notre Dame undergraduate research assistants Michael Thompson for his work with the image-mapping code and Jens Rataczak for his assistance with the model wrap. This work has been cleared for public release (Case Number 88ABW-2019-4644).PDF Received25 September 2019Accepted27 January 2020Published online27 February 2020

Referência(s)
Altmetric
PlumX