A Fast and Simple Method for Detecting Identity-by-Descent Segments in Large-Scale Data
2020; Elsevier BV; Volume: 106; Issue: 4 Linguagem: Inglês
10.1016/j.ajhg.2020.02.010
ISSN1537-6605
AutoresYing Zhou, Sharon R. Browning, Brian L. Browning,
Tópico(s)Genetic Mapping and Diversity in Plants and Animals
ResumoSegments of identity by descent (IBD) are used in many genetic analyses. We present a method for detecting identical-by-descent haplotype segments in phased genotype data. Our method, called hap-IBD, combines a compressed representation of haplotype data, the positional Burrows-Wheeler transform, and multi-threaded execution to produce very fast analysis times. An attractive feature of hap-IBD is its simplicity: the input parameters clearly and precisely define the IBD segments that are reported, so that program correctness can be confirmed by users. We evaluate hap-IBD and four state-of-the-art IBD segment detection methods (GERMLINE, iLASH, RaPID, and TRUFFLE) using UK Biobank chromosome 20 data and simulated sequence data. We show that hap-IBD detects IBD segments faster and more accurately than competing methods, and that hap-IBD is the only method that can rapidly and accurately detect short 2–4 centiMorgan (cM) IBD segments in the full UK Biobank data. Analysis of 485,346 UK Biobank samples through the use of hap-IBD with 12 computational threads detects 231.5 billion autosomal IBD segments with length ≥2 cM in 24.4 h. Segments of identity by descent (IBD) are used in many genetic analyses. We present a method for detecting identical-by-descent haplotype segments in phased genotype data. Our method, called hap-IBD, combines a compressed representation of haplotype data, the positional Burrows-Wheeler transform, and multi-threaded execution to produce very fast analysis times. An attractive feature of hap-IBD is its simplicity: the input parameters clearly and precisely define the IBD segments that are reported, so that program correctness can be confirmed by users. We evaluate hap-IBD and four state-of-the-art IBD segment detection methods (GERMLINE, iLASH, RaPID, and TRUFFLE) using UK Biobank chromosome 20 data and simulated sequence data. We show that hap-IBD detects IBD segments faster and more accurately than competing methods, and that hap-IBD is the only method that can rapidly and accurately detect short 2–4 centiMorgan (cM) IBD segments in the full UK Biobank data. Analysis of 485,346 UK Biobank samples through the use of hap-IBD with 12 computational threads detects 231.5 billion autosomal IBD segments with length ≥2 cM in 24.4 h.
Referência(s)