Artigo Acesso aberto Produção Nacional Revisado por pares

Slow slip source characterized by lithological and geometric heterogeneity

2020; American Association for the Advancement of Science; Volume: 6; Issue: 13 Linguagem: Inglês

10.1126/sciadv.aay3314

ISSN

2375-2548

Autores

Philip M. Barnes, Laura Wallace, D. M. Saffer, Rebecca Bell, Michael B. Underwood, Åke Fagereng, Francesca Meneghini, H. M. Savage, Hannah S. Rabinowitz, Julia K. Morgan, Hiroko Kitajima, Steffen Kutterolf, Yoshitaka Hashimoto, Christie Helouise Engelmann de Oliveira, Atsushi Noda, Martin P. Crundwell, Claire L. Shepherd, Adam D. Woodhouse, Robert N. Harris, Maomao Wang, Stuart Henrys, D. H. N. Barker, Katerina Petronotis, S. Bourlange, Michael B. Clennell, Ann E. Cook, Brandon Dugan, Judith Elger, P. M. Fulton, Davide Gamboa, Annika Greve, Shuoshuo Han, A. Hüpers, Matt J. Ikari, Yoshihiro Ito, Gil Young Kim, Hiroaki Koge, Hikweon Lee, Xuesen Li, Min Luo, Pierre Malié, Gregory F. Moore, Joshu J. Mountjoy, David D. McNamara, Matteo Paganoni, Elizabeth J. Screaton, Uma Shankar, Srisharan Shreedharan, Evan A. Solomon, Xiujuan Wang, Hung‐Yu Wu, Ingo A. Pecher, Leah J. LeVay,

Tópico(s)

Seismic Imaging and Inversion Techniques

Resumo

Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust.

Referência(s)