Artigo Revisado por pares

Nanotechnology in Biofilm Prevention

2020; Future Medicine; Volume: 15; Issue: 6 Linguagem: Inglês

10.2217/fmb-2019-0327

ISSN

1746-0921

Autores

Luciana Robino, Paola Scavone,

Tópico(s)

Antimicrobial agents and applications

Resumo

Future MicrobiologyVol. 15, No. 6 EditorialNanotechnology in biofilm preventionLuciana Robino & Paola ScavoneLuciana RobinoDepartamento de Bacteriología y Virología, Facultad de Medicina, Universidad de la República, Montevideo, Alfredo Navarro 3051, PC 11600, Uruguay & Paola Scavone*Author for correspondence: E-mail Address: pscavone@gmail.comDepartamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Av. Italia 3318, PC 11600, UruguayPublished Online:3 Apr 2020https://doi.org/10.2217/fmb-2019-0327AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: antibiofilm coatingbiofilmeradicationnanoflowersnanomaterialsnanoparticlesnanotechnologyReferences1. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15(2), 167–193 (2002).Crossref, Medline, CAS, Google Scholar2. Dobell C. Antony Van Leeuwenhoek and His "Little Animals". Dover Publications Inc., NY, USA 239–255 (1960).Google Scholar3. Høiby N. A short history of microbial biofilms and biofilm infections. APMIS 125(4), 272–275 (2017).Crossref, Medline, Google Scholar4. Lewis K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45(4), 999–1007 (2001).Crossref, Medline, CAS, Google Scholar5. Khatoon Z, McTiernan C, Suuronen E, Mah TF, Alarcona E. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4(12), e01067 (2018).Crossref, Medline, Google Scholar6. Donlan RM. Biofilms on central venous catheters: is eradication possible? Curr. Top. Microbiol. Immunol. 322, 133–161 (2008).Medline, CAS, Google Scholar7. Whatmore R. Nanotechnology – what is it? Should we be worried? Occup. Med. 56(5), 295–299 (2006).Crossref, Google Scholar8. Jeevanandam J, Barhoum A, Chan Y, Dufresne A, Danquah M. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018).Crossref, Medline, CAS, Google Scholar9. Whitesides G. Nanoscience, nanotechnology and chemistry. Small 1(2), 172–179 (2005).Crossref, Medline, CAS, Google Scholar10. Fulaz S, Vitale S, Quinn L, Casey E. Nanoparticle-biofilm interactions: the role of the EPS matrix. Trends Microbiol. 27(11), 915–926 (2019).Crossref, Medline, CAS, Google Scholar11. Hetrick E, Shin J, Paul H, Schoenfisch M. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30(14), 2782–2789 (2009).Crossref, Medline, CAS, Google Scholar12. Ikuma K, Decho A, Lau B. When nanoparticles meet biofilms – interactions guiding the environmental fate and accumulation of nanoparticles. Front. Microbiol. 6, 591 (2015).Crossref, Medline, Google Scholar13. Peulen T, Wilkinson K. Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol. 45(8), 3367–3373 (2011).Crossref, Medline, CAS, Google Scholar14. Joo S, Aggarwal S. Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: mechanistic insights and state of knowledge. J. Environ. Manag. 225, 62–74 (2018).Crossref, Medline, CAS, Google Scholar15. Cochrane Central Register of Controlled Trials. http://www.cochranelibrary.com Google Scholar16. Moriarty TF, Zaat S, Busscher H. Immunological aspects and antimicrobial strategies. In: Biomaterials Associated Infection. MoriartyFintanZaatSebastian A JBusscherHenk J (Eds). Springer, NY, USA (2013).Crossref, Google Scholar17. Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK. Bacterial adherence and biofilm formation on medical implants: a review. Proc. Inst. Mech. Eng. H. 228(10), 1083–1099 (2014).Crossref, Medline, Google Scholar18. Khatoon U, Rao N, Mantravadi K, Oztekin Y. Strategies to synthesize various nanostructures of silver and their applications – a review. RSC Adv. 8, 19739–19753 (2018).Crossref, CAS, Google Scholar19. Iribarnegaray V, Navarro N, Robino L, Zunino P, Morales J, Scavone P. Magnesium-doped zinc oxide nanoparticles alter biofilm formation of Proteus mirabilis. Nanomedicine 14(12), 1551–1564 (2019).Link, CAS, Google Scholar20. Qi M, Chi M, Sun X et al. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int. J. Nanomedicine 14, 6937–6956 (2019).Crossref, Medline, CAS, Google Scholar21. Dai T, Huang YY, Hamblin MR. Photodynamic therapy for localized infections-state of the art. Photodiagn. Photodyn. 6(3–4), 170–188 (2009).Crossref, Medline, CAS, Google Scholar22. Dong K, Ju E, Gao N, Wang Z, Ren J, Qu X. Synergistic eradication of antibiotic-resistant bacteria based biofilms in vivo using a NIR-sensitive nanoplatform. Chem. Commun. 52(30), 5312–5315 (2016).Crossref, Medline, CAS, Google Scholar23. Negahdary M, Heli H. Applications of nanoflowers in biomedicine. Recent. Pat. Nanotechnol. 12(1), 22–33 (2018).Crossref, Medline, CAS, Google Scholar24. Cai Q, Gao Y, Gao T et al. Insight into biological effects of zinc oxide nanoflowers on bacteria: why morphology matters. ACS Appl. Mater. Interfaces 8(16), 10109–10120 (2016).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetailsCited ByNanomaterial-Based Antimicrobial Coating for Biomedical Implants: New Age Solution for Biofilm-Associated Infections10 December 2022 | ACS Omega, Vol. 7, No. 50Antifungal Biofilm Strategies: A Less Explored Area in Wound ManagementCurrent Pharmaceutical Biotechnology, Vol. 23, No. 12Development and characterization of an amphotericin B - loaded nanoemulsion applied to Candida auris biofilms controlJournal of Drug Delivery Science and Technology, Vol. 74Antibiotic-loaded lipid-based nanocarrier: A promising strategy to overcome bacterial infectionInternational Journal of Pharmaceutics, Vol. 621Nanoparticles approach to eradicate bacterial biofilm-related infections: A critical reviewChemosphere, Vol. 288Nano-targeted drug delivery approaches for biofilm-associated infectionsEnhanced clearing of Candida biofilms on a 3D urothelial cell in vitro model using lysozyme-functionalized fluconazole-loaded shellac nanoparticles1 January 2021 | Biomaterials Science, Vol. 9, No. 20 Vol. 15, No. 6 Follow us on social media for the latest updates Metrics Downloaded 255 times History Received 26 November 2019 Accepted 25 February 2020 Published online 3 April 2020 Published in print April 2020 Information© 2020 Future Medicine LtdKeywordsantibiofilm coatingbiofilmeradicationnanoflowersnanomaterialsnanoparticlesnanotechnologyFinancial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download

Referência(s)
Altmetric
PlumX